

Industrial Airfoil Blade Control Damper Model NAH-720-4

Design / Application

Model NAH-720-4 (Opposed Blade Operation) and NAH-721-4 (Parallel Blade Operation) are Industrial Air Control Damper with Airfoil Shaped Blades. These models consist of a heavy duty flanged frames designed for direct attachment to the ductwork or equipment. NAH Series models are ideal for balancing and/or shut off HVAC applications in the industrial systems with many options to meet your needs.

STANDARD CONSTRUCTION:

FRAME:

8" x 2-1/2" x 3/8" H.R.S. channel

BLADES:

Airfoil-shaped 12 ga H.R.S. double skin construction 5" to 8" wide.

AXLES:

Plated steel 1-7/16"Ø T.G.&P

LINKAGE:

9 ga galvanized jamb linkage

BEARINGS:

Cast iron housing 2 hole ball bearings

FINISH:

Powder Coated (super durable polyester gray)

SIZE LIMITATIONS:

Maximum size: 60"w x 96"h

Minimum size: single blade 6"w x 8"h

RATINGS:

Pressure: 10-40" w.g.- differential pressure

Velocity: 3000-8000 fpm

Temperature: -20°F - 1,000°F (without blade gasket)

Note: Special blade clearances are required when temperatures exceed

250°F (121°C).

NOTE: Damper blades always run horizontal and are always the first dimension (W) when ordering (example: always order W" x H").

*Inside Dimensions are Actual Size(not undersized)

OPTIONS

	OFTIO
	☐ Stainless
	☐ Flange bo
	☐ EPDM bla
	☐ Silicone b
	☐ 304 stain
	☐ 316 stainl
	☐ Bearing C
	☐ Hand Qua
	☐ Stuffing b
ļ	Outboard
ı	☐ Linkage o
	☐ Central m
	☐ Actuator
	☐ Powder C

☐ Stainless steel jamb seals
☐ Flange bolt holes
☐ EPDM blade seals 250° F
☐ Silicone blade seals 450° F
☐ 304 stainless steel construction
☐ 316 stainless steel construction
☐ Bearing Options: (consult factory)
☐ Hand Quadrant (std. #2) ☐ Wheel driven worm gear heavy duty
☐ Chain driven worm gear heavy duty
☐ Stuffing box seal
Outboard bearing with shaft seal
☐ Linkage cover
☐ Central manifold grease system
Actuator
☐ Powder Coated
☐ 1000° F (powder coated) resistance

☐ Insulated (Foam Filled Blades)

	l Max. Lemp.	"W"	"H"	Frame Depth	Flange Width			DOIL II	ole Illion	rmauon			
Quantity:	(if higher than 250°F)	Width	Height	"D" 8" std.	"F" 2" std.	J	N1	L Spacing	M Dia.	K	N2	С	REMARKS

Job Name:	
Location:	
Architect:	☐ Model NAH-720-4 (opposed blades)
Engineer:	☐ Model NAH-721-4 (parallel blades)
Contractor:	

Imperial Units (Forward Flow)

Damper Width X Height	1 in. w.g. Class	4 in. w.g. Class	8 in. wg Class	*Torque (per sq. ft.)
12" x 12"	Class I	Class I	Class I	18 lbs-in
24" X 24"	Class I	Class I	Class I	15 lbs-in
36" X 36"	Class I	Class I	Class I	18 lbs-in
12" X 48"	Class I	Class I	Class I	15 lbs -i n
48" X 12"	Class I	Class I	Class I	15 lbs -i n
60" X 36"	Class I	Class I	Class I	18 lbs-in

Air leakage is based on operation between 50°F to 104°F. All data corrected to represent air density of 0.075 lbs/ft.

Imperial Units (Back Flow)

Damper Width X Height	1 in. w.g. Class	4 in. w.g. Class	8 in. wg Class	*Torque (per sq. ft.)
12" x 12"	Class I	Class I	Class I	18 lbs-in
24" X 24"	Class I	Class I	Class I	15 lbs-in
36" X 36"	Class I	Class I	Class I	18 lbs-in
12" X 48"	Class II	Class II	Class II	15 lbs-in
48" X 12"	Class I	Class I	Class I	15 lbs-in
60" X 36"	Class I	Class II	Class I	18 lbs-in

^{*}Torque applied to hold damper in closed position

	Leakage, ft ³/min²/ft					
	Required	Rating	Extended Rar	nges (optional)		
Pressure	1"	4"	8"	12"		
I	4	8	11	14		
II	10	20	28	35		
III	40	80	112	140		

All data corrected to represent standard air at a density of 0.075 lbs/ft.

	NAH-720 SOUND RATINGS								
Damper Slze	Dam Full C		Damper 75% Open		Dam 50% (Damper 25% Open		
	CFM	NC	CFM	NC	CFM	NC	CFM	NC	
12 x 12	2000 3000 4000	16 28 36	1500 2250 3000	11 21 29	1000 1500 2000	11 18 24	500 750 1000	* *	
18 x 18	2250 4500 6750	17 33 43	1688 3375 5063	10 26 37	1125 2250 3375	21 31 40	563 1125 1688	* * 15	
24 x 24	4000 8000 12000	11 33 43	3000 6000 9000	10 29 42	2000 4000 6000	26 37 46	1000 2000 3000	* 21 31	
NC = Nolse * = Less tha		edbe l s Is	based on r	oom effec	and 10db	of room a	attenuation		

AMCA Test Figures

Figure 5.4- Test Device Setup with Outlet Chamber

Figure 6.3- Airflow Rate Measurement Setup- Multiple Nozzle Chamber on Fan Inlet

^{*}Torque applied to hold damper in closed position

Standard International Units (Forward Flow)

Damper Width X Height (mm)	250 Pa Class	1 KPa Class	2 KPa Class	*Torque
305 x 305	Class I	Class I	Class I	3,214 grams-cm
610 X 610	Class I	Class I	Class I	2,679 grams-cm
915 X 915	Class I	Class I	Class I	3,214 grams-cm
305 X 1220	Class I	Class I	Class I	2,679 grams-cm
1220 X 305	Class I	Class I	Class I	2,679 grams-cm
1525 X 915	Class I	Class I	Class I	3,214 grams-cm

Air leakage is based on operation between 10°C to 40°C. All data corrected to represent air density of 1.201 kg/m³.

Standard International Units (Back Flow)

Damper Width X Height (mm)	250 Pa Class	1 KPa Class	2 KPa Class	*Torque
305 x 305	Class I	Class I	Class I	3,214 grams-cm
610 X 610	Class I	Class I	Class I	2,679 grams-cm
915 X 915	Class I	Class I	Class I	3,214 grams-cm
305 X 1220	Class II	Class II	Class II	2,679 grams-cm
1220 X 305	Class I	Class I	Class I	2,679 grams-cm
1525 X 915	Class I	Class II	Class I	3,214 grams-cm

^{*}Torque applied to hold damper in closed position

	Leakage, L/s /m ²					
	Require	d Rating	Extended Ranges (optional)			
Pressure	0.25 kPa	1.0 kPa	2.0 kPa	3.0 kPa		
I	20.3	40.6	55.9	71.1		
II	50.8	102	142	178		
III	203	406	569	711		

FRAME CONSTRUCTION OPTIONS

Flange (F Dim): Standard-2" Bolt holes: (Standard construction is <u>no</u> bolt holes)

Optional - 1-1/2" to 4"

Dim. "M": 7/16" dia. hole Dim. "L": 6" Center to Center

Web (D Dim): Standard - 8"

Optional - 8" to 12"

Note: Customer must be within Min. or Max limits on table below.

Dim.	Min or Max	Standard	Description
J	min. 3/4"		First/Last Space in <u>Head/Sill</u>
N1	min. 1.0"		No. of holes in <u>Head/Sill</u>
K	min. F/2"		First/Last Space in <u>Jamb</u>
N2	min. 1.0"		No. of holes in <u>Jamb</u>
С	.75*D" to 3/4"	F/(2*M)"	Centerline of bolt hole from inside edge of frame
L	2" to 12"	6.0"	Hole Spacing
M	1/4" to 11/16"	7/16"	Mounting hole Diameter

^{*}Torque applied to hold damper in closed position

Face Velocity (FT/MIN) Based on STANDARD AIR- .075 lb. per cubic foot.

NAH-720-4 sizes: 12x12, 24x24, 48x12, 12x48, 36x36 (305x305, 610x610, 1219x305, 305x1219,914x914)

NAH-720-4

PRESSURE LIMITATIONS

The chart at the right shows conservative pressure limitations based on a maximum blade deflection of w/360.

TEMPERATURE LIMITATIONS

Blade Seals: EPDM -40° to +250°F

Silicone Rubber -40° to +450°F

Jamb Seals: Flexible stainless steel -40° to +400°F

VELOCITY LIMITATIONS

The chart at the right shows conservative velocity limitations based on damper size.

Figure 5.3- Test Device Setup with Inlet and Outlet Ducts

AMCA Test Figure 5.3

Figure 5.3 Illustrates a fully ducted damper. This configuration has low pressure drop because entrance and exit losses are minimized by straight duct runs upstream and downstream of the damper.

Pressure Drop Data

This pressure drop data was conducted in accordance with AMCA Standard 500 using Test Figure 5.3. All data has been corrected to represent standard air at a density of .075 lb/cu.ft.

Actual pressure drop found in any HVAC system is a combination of many factors. This pressure drop Information along with an analysis of other system influences should be used to estimate actual pressure losses for a damper installed in a given HVAC system.

12 x 12

Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)	
1000 (5.08)	0.18 (45)	
1500 (7.62)	0.35 (88)	
2000 (10.16)	0.57 (144)	

24 x 24

Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)	
1000 (5.08)	0.05 (12)	
1500 (7.62)	0.08 (20)	
2000 (10.16)	0.13 (33)	

48 x 12

40 X 12		
Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)	
1000 (5.08)	0.08 (20)	
1500 (7.62)	0.18 (45)	
2000 (10.16)	0.26 (66)	

12 x 48

12 / 40		
Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)	
1000 (5.08)	0.05 (12)	
1500 (7.62)	0.08 (20)	
2000 (10.16)	0.13 (33)	

36 x 36

Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)
1000 (5.08)	0.011 (3)
1500 (7.62)	0.04 (10)
2000 (10.16)	0.06 (15)

Figure 6.5- Airflow Rate Measurement Setup- Multiple Nozzle Chamber on Fan Outlet