Industrial Dampers

DAMPER SERIES

Industrial Airfoil Blade Control Damper Model NAH-720-1

Design / Application

Model **NAH-720-1** (Opposed Blade Operation) and **NAH-721-1** (Parallel Blade Operation) are Industrial Air Control Damper with Airfoil Shaped Blades. These models consist of a heavy duty flanged frames designed for direct attachment to the ductwork or equipment. **NAH Series** models are ideal for balancing and/or shut off HVAC applications in the industrial systems with many options to meet your needs.

STANDARD CONSTRUCTION:

FRAME:

8" x 2" x 12ga H.R.S. steel channel

BLADES:

Airfoil-shaped 16 ga H.R.S. double skin construction 5" to 8" wide.

AXLES:

Plated steel 1/2"Ø

LINKAGE:

9 ga galvanized jamb linkage

BEARINGS:

Bronze Oilite

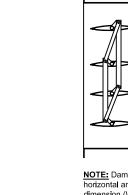
FINISH:

Powder Coated (super durable polyester gray)

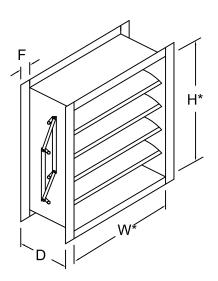
SIZE LIMITATIONS:

Maximum size: 60"w x 96"h

Minimum size: single blade 6"w x 8"h


RATINGS:

Pressure: 8-20" w.g.- differential pressure


Velocity: 2000-4500 fpm
Temperature: 180° - 400°

Note: Special blade clearances are required when temperatures exceed

250°F (121°C).

8"

NOTE: Damper blades <u>always</u> run horizontal and are always the first dimension (W) when ordering (example: always order W" x H").

*Inside Dimensions are Actual Size(not undersized)

0	P ⁻	П	O	N	S

☐ Stainless steel jamb	seals
------------------------	-------

☐ Flange bolt holes

☐ EPDM blade seals 250° F

☐ Silicone blade seals 450° F

☐ 304 stainless steel construction☐ 316 stainless steel construction☐

☐ Ball bearings: (2) hole flange style

Standard

☐ Standard
☐ Stainless steel

____ Stainless :

☐ Stuffing box seal

☐ Outboard bearing with shaft seal ☐ Linkage cover

☐ Linkage cove

☐ Central manifold grease system

☐ Hand Quadrant

Actuator

☐ Powder Coated

☐ 1000° F (powder coated) resistance

☐ Insulated (Foam Filled Blades)

	Max.Temp.	"W"	"H"	Frame Depth	Flange Width	dth Bolt Hole Information				nation			
Quantity:	Max.Temp. (if higher than 250°F)	Wldth	Height	"D" 8" std.	"F" 2" std.	J	N1	L Spacing	M Dia.	K	N2	O	REMARKS

□ Model NAH-720-1	(opposed blades)
☐ Model NAH-721-1	(parallel blades)
_	. ,

Imperial Units (Forward Flow)

Damper Width X Height	1 in. w.g. Class	4 in. w.g. Class	8 in. wg Class	*Torque (per sq. ft.)
12" x 12"	Class I	Class II	Class II	15 lbs/in
24" X 24"	Class I	Class I	Class I	12.59 lbs/in
36" X 36"	Class I	Class I	Class I	15 lbs/in
12" X 48"	Class III	Class III	Class II	12.59 lbs/in
48" X 12"	Class I	Class I	Class I	12.59 lbs/in
60" X 36"	Class II	Class II	Class II	15 lbs/in

Air leakage is based on operation between 50°F to 104°F. All data corrected to represent air density of 0.075 lbs/ft.³

Imperial Units (Back Flow)

Damper				*Torque
	1 in. w.g. Class	4 in. w.g. Class	8 in. wg Class	(per sq. ft.)
Width X Height	i i i i i i i i i i i i i i i i i i i	g. ee	- III II G - III I	(per sq. it.)
12" x 12"	Class II	Class III	Class III	15 lbs/in
24" X 24"	Class I	Class I	Class II	12.59 lbs/in
36" X 36"	Class II	Class III	Class III	15 lbs/in
12" X 48"	Class III	Class III	Class III	12.59 lbs/in
48" X 12"	Class II	Class II	Class II	12.59 lbs/in
60" X 36"	Class III	Class III	Class II	15 lbs/in

^{*}Torque applied to hold damper in closed position

	Leakage, ft ³/min²/ft						
	Required	Rating	Extended Rar	nges (optional)			
Pressure	1"	4"	8"	12"			
I	4	8	11	14			
II	10	20	28	35			
III	40	80	112	140			

All data corrected to represent standard air at a density of 0.075 lbs/ft.

				3
	PL-1 I	PL-7	PL-X	PL-Y
	75 mm ±6 mm (3 ln. ±.025 ln.)	M/2 min.	_	
Device Being Tested	W×H	M		AIRFLOW
		No	outle cross	oressure drop testing an t chamber shall have a s sectional area at least n times the free area of

Figure 5.4- Test Device Setup with Outlet Chamber

the device being tested.

NAH-720 SOUND RATINGS									
Damper Size	Damper Full Open		Dam 75% (Dam 50% (Damper 25% Open		
	CFM	NC	CFM	NC	CFM	NC	CFM	NC	
	2000	16	1500	11	1000	11	500	*	
12 x 12	3000	28	2250	21	1500	18	750	*	
	4000	36	3000	29	2000	24	1000	*	
	2250	17	1688	10	1125	21	563	*	
18 x 18	4500	33	3375	26	2250	31	1125	*	
	6750	43	5063	37	3375	40	1688	15	
	4000	11	3000	10	2000	26	1000	*	
24 x 24	8000	33	6000	29	4000	37	2000	21	
	12000	43	9000	42	6000	46	3000	31	

NC = Noise criteria in Decibels is based on room effect and 10db of room attenuation.

* = Less than 10 NC

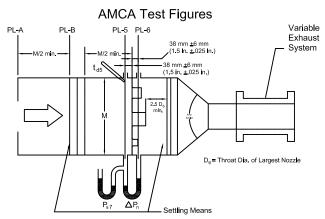


Figure 6.3- Airflow Rate Measurement Setup- Multiple Nozzle Chamber on Fan Inlet

^{*}Torque applied to hold damper in closed position

Standard International Units (Forward Flow)

Damper Width X Height (mm)	250 Pa Class	1 KPa Class	2 KPa Class	*Torque
305 x 305	Class I	Class II	Class II	2,679 grams/cm
610 X 610	Class I	Class I	Class I	2,248 grams/cm
915 X 915	Class I	Class I	Class I	2,679 grams/cm
305 X 1220	Class III	Class III	Class II	2,248 grams/cm
1220 X 305	Class I	Class I	Class I	2,248 grams/cm
1525 X 915	Class II	Class II	Class II	2,679 grams/cm

Air leakage is based on operation between 10°C to 40°C. All data corrected to represent air density of 1.201 kg/m³.

Standard International Units (Back Flow)

Damper Width X Height (mm)	250 Pa Class	1 KPa Class	2 KPa Class	*Torque
305 x 305	Class II	Class III	Class III	2,679 grams/cm
610 X 610	Class I	Class I	Class II	2,248 grams/cm
915 X 915	Class II	Class III	Class III	2,679 grams/cm
305 X 1220	Class III	Class III	Class III	2,248 grams/cm
1220 X 305	Class II	Class II	Class II	2,248 grams/cm
1525 X 915	Class III	Class III	Class II	2,679 grams/cm

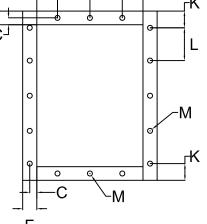
^{*}Torque applied to hold damper in closed position

	Leakage, L/s /m²							
	Require	d Rating	Extended Ranges (optional)					
Pressure	0.25 kPa	1.0 kPa	2.0 kPa	3.0 kPa				
Ţ	20.3	40.6	55.9	71.1				
II	50.8	102	142	178				
III	203	406	569	711				

FRAME & BOLT HOLE CONSTRUCTION OPTIONS

Flange (F Dim): Standard-2" Bolt holes: (Standard construction is **no** bolt holes)

Optional - 1-1/2" to 4"


Dim. "M": 7/16" dia. hole Dim. "L": 6" Center to Center

Note: Customer must be within Min. or Max limits on table below.

Web (D Dim): Standard - 8"
Optional - 8" to 12"

Dim. "L": 6" Center to Center

Description Dim. Min or Max Standard First/Last Space in Head/Sill J min. 3/4" **N1** No. of holes in Head/Sill min. 1.0" First/Last Space in Jamb K min. F/2" N₂ No. of holes in Jamb min. 1.0" C 75*D" to 3/4' F/(2*M)" Centerline of bolt hole from inside edge of frame Hole Spacing 2" to 12" 6.0" Mounting hole Diameter M 1/4" to 11/16" 7/16"

^{*}Torque applied to hold damper in closed position

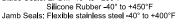
PRESSURE DROP 12" x 12' STATIC PRESSURE DROP (INCHES W.G.) 24" X 24" 48" X 12" 12" X 48" 36" X 36" 0.01

Face Velocity (FT/MIN)

Based on STANDARD AIR- .075 lb. per cubic foot.

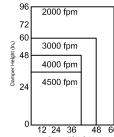
≥ 20

NAH-720-1 sizes: 12x12, 24x24, 48x12, 12x48, 36x36 (305x305, 610x610, 1219x305, 305x1219,914x914)


NAH-720-1

PRESSURE LIMITATIONS

The chart at the right shows conservative pressure limitations based on a maximum blade deflection


TEMPERATURE LIMITATIONS

Blade Seals: EPDM -40° to +250°F

VELOCITY LIMITATIONS

The chart at the right shows conservative velocity limitations based on damper size.

12 24 36 48 60

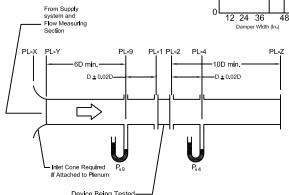


Figure 5.3- Test Device Setup with Inlet and Outlet Ducts

AMCA Test Figure 5.3

Figure 5.3 Illustrates a fully ducted damper. This configuration has low pressure drop because entrance and exit losses are minimized by straight duct runs upstream and downstream of the damper.

Pressure Drop Data

This pressure drop data was conducted in accordance with AMCA Standard 500 using Test Figure 5.3. All data has been corrected to represent standard air at a density of .075 lb/cu.ft.

Actual pressure drop found in any HVAC system is a combination of many factors. This pressure drop information along with an analysls of other system influences should be used to estimate actual pressure losses for a damper installed in a given HVAC system.

12 x 12

Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)
1000 (5.08)	0.15 (38)
1500 (7.62)	0.33 (83)
2000 (10.16)	0.55 (139)

24 x 24

Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)
1000 (5.08)	0.03 (7)
1500 (7.62)	0.06 (15)
2000 (10.16)	0.11 (27)

48 x 12

- TO X 12	
Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)
1000 (5.08)	0.06 (15)
1500 (7.62)	0.15 (38)
2000 (10.16)	0.23 (58)

12 x 48

12 X 10	
Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)
1000 (5.08)	0.03 (7)
1500 (7.62)	0.06 (15
2000 (10.16)	0.11 (27)

36 x 36

Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)
1000 (5.08)	0.009 (2)
1500 (7.62)	0.02 (5)
2000 (10.16)	0.03 (7)

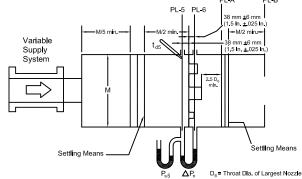


Figure 6.5- Airflow Rate Measurement Setup- Multiple Nozzle Chamber on Fan Outlet

Industrial Airfoil Blade Control Damper Model NAH-720-2

Design / Application

Model NAH-720-2 (Opposed Blade Operation) and NAH-721-2 (Parallel Blade Operation) are Industrial Air Control Damper with Airfoil Shaped Blades. These models consist of a heavy duty flanged frames designed for direct attachment to the ductwork or equipment. NAH Series models are ideal for balancing and/or shut off HVAC applications in the industrial systems with many options to meet your needs.

STANDARD CONSTRUCTION:

FRAME:

8" x 2" x 10ga H.R.S. steel channel

BLADES:

Airfoil-shaped 16 ga H.R.S. double skin construction 5" to 8" wide.

AXLES:

Plated steel 3/4"Ø

LINKAGE:

9 ga galvanized jamb linkage

BEARINGS:

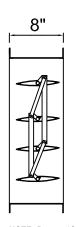
Bronze Oilite

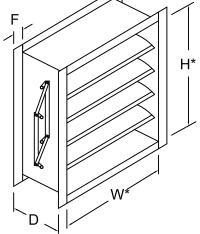
Powder Coated (super durable polyester gray)

SIZE LIMITATIONS:

Maximum size: 60"w x 96"h

Minimum size: single blade 6"w x 8"h


RATINGS:


Pressure: 10-30" w.g.- differential pressure

Velocity: 3000-6000 fpm Temperature: 180° -400°

Note: Special blade clearances are required when temperatures exceed

250°F (121°C).

NOTE: Damper blades always run horizontal and are always the first dimension (W) when ordering (example: always order W" x H").

*Inside Dimensions are Actual Size(not undersized)

OPTIONS

☐ Flange bolt holes

☐ EPDM blade seals 250° F

☐ Silicone blade seals 450° F

☐ 304 stainless steel construction

☐ 316 stainless steel construction

☐ Ball bearings: (2) hole flange style

Standard ☐ Stainless steel

☐ Stuffing box seal

☐ Outboard bearing with shaft seal

☐ Linkage cover

☐ Central manifold grease system

☐ Hand Quadrant

☐ Actuator

☐ Powder Coated

☐ 1000° F (powder coated) resistance

☐ Insulated (Foam Filled Blades)

	I Wax. I cilip.	vv	I "H" I	Frame Depui	Flange widin			DOLLIN		lation			
Quantity:	(if higher than 250°F)	Width	Helght	"D" 8" std.	"F" 2" std.	٦	N1	L Spacing	M Dia.	K	N2	С	REMARKS

Job Name:		
Location:		
Architect:	☐ Model NAH-720-2	(opposed blades)
Engineer:	☐ Model NAH-721-2	(parallel blades)
Contractor:		. ,

Imperial Units (Forward Flow)

Damper Width X Height	1 in. w.g. Class	4 in. w.g. Class	8 in. wg Class	*Torque (per sq. ft.)
12" x 12"	Class I	Class II	Class II	15 lbs/in
24" X 24"	Class I	Class I	Class I	12.59 lbs/in
36" X 36"	Class I	Class I	Class I	15 lbs/in
12" X 48"	Class III	Class III	Class II	12.59 lbs/in
48" X 12"	Class I	Class I	Class I	12.59 lbs/in
60" X 36"	Class II	Class II	Class II	15 lbs/in

Air leakage is based on operation between 50°F to 104°F. All data corrected to represent air density of 0.075 lbs/ft.3

Imperial Units (Back Flow)

Damper Width X Height	1 in. w.g. Class	4 in. w.g. Class	8 in. wg Class	*Torque (per sq. ft.)
12" x 12"	Class II	Class III	Class III	15 lbs/in
24" X 24"	Class I	Class I	Class II	12.59 lbs/in
36" X 36"	Class II	Class III	Class III	15 lbs/in
12" X 48"	Class III	Class III	Class III	12.59 lbs/in
48" X 12"	Class II	Class II	Class II	12.59 lbs/in
60" X 36"	Class III	Class III	Class II	15 lbs/in

^{*}Torque applied to hold damper in closed position

	Leakage, ft ³/min²/ft									
	Required	Required Rating Extended Ranges (optional)								
Pressure Class	1"	4"	8"	12"						
I	4	8	11	14						
II	10	20	28	35						
III	40	80	112	140						

All data corrected to represent standard air at a density of 0.075 lbs/ft.

NAH-720 SOUND RATINGS									
Damper Size	Damper Full Open		Dam 75% (Dam 50% (Damper 25% Open		
	CFM	NC	CFM	NC	CFM	NC	CFM	NC	
12 x 12	2000 3000 4000	16 28 36	1500 2250 3000	11 21 29	1000 1500 2000	11 18 24	500 750 1000	* *	
18 x 18	2250 4500 6750	17 33 43	1688 3375 5063	10 26 37	1125 2250 3375	21 31 40	563 1125 1688	* * 15	
24 x 24	4000 8000 12000	11 33 43	3000 6000 9000	10 29 42	2000 4000 6000	26 37 46	1000 2000 3000	* 21 31	
NC = Nolse * = Less tha		edbels Is	based on re	oom effect	and 10db	of room a	ttenuation.		

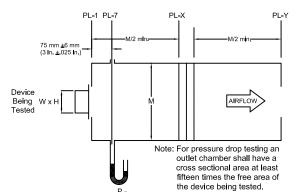


Figure 5.4- Test Device Setup with Outlet Chamber

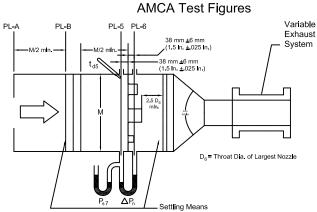


Figure 6.3- Airflow Rate Measurement Setup- Multiple Nozzle Chamber on Fan Inlet

^{*}Torque applied to hold damper in closed position

Standard International Units (Forward Flow)

Damper Width X Height (mm)	250 Pa Class	1 KPa Class	2 KPa Class	*Torque
305 x 305	Class I	Class II	Class II	2,679 grams/cm
610 X 610	Class I	Class I	Class I	2,248 grams/cm
915 X 915	Class I	Class I	Class I	2,679 grams/cm
305 X 1220	Class III	Class III	Class II	2,248 grams/cm
1220 X 305	Class I	Class I	Class I	2,248 grams/cm
1525 X 915	Class II	Class II	Class II	2,679 grams/cm

Air leakage is based on operation between 10°C to 40°C. All data corrected to represent air density of 1.201 kg/m³.

Standard International Units (Back Flow)

Damper Width X Height (mm)	250 Pa Class	1 KPa Class	2 KPa Class	*Torque
305 x 305	Class II	Class III	Class III	2,679 grams/cm
610 X 610	Class I	Class I	Class II	2,248 grams/cm
915 X 915	Class II	Class III	Class III	2,679 grams/cm
305 X 1220	Class III	Class III	Class III	2,248 grams/cm
1220 X 305	Class II	Class II	Class II	2,248 grams/cm
1525 X 915	Class III	Class III	Class II	2,679 grams/cm

^{*}Torque applied to hold damper in closed position

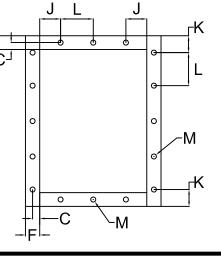
	Leakage, L/s /m²									
	Require	d Rating	Extended Ranges (optional)							
Pressure	0.25 kPa	1.0 kPa	2.0 kPa	3.0 kPa						
I	20.3	40.6	55.9	71.1						
II	50.8	102	142	178						
111	203	406	569	711						

FRAME CONSTRUCTION OPTIONS

Flange (F Dim): Standard-2" Bolt holes: (Standard construction is <u>no</u> bolt holes)

Optional - 1-1/2" to 4"

Dim. "M": 7/16" dia. hole


Web (D Dim): Standard - 8"

Optional - 8" to 12"

Dim. "L": 6" Center to Center

Note: Customer must be within Min. or Max limits on table below.

Description Min or Max Standard Dim. First/Last Space in Head/Sill min. 3/4" J **N1** No. of holes in Head/Sill min. 1.0" First/Last Space in Jamb K min. F/2" N2 No. of holes in Jamb min. 1.0" F/(2*M)" C 75*D" to 3/4' Centerline of bolt hole from inside edge of frame Hole Spacing L 2" to 12" 6.0" Mounting hole Diameter M 1/4" to 11/16" 7/16"

^{*}Torque applied to hold damper in closed position

PRESSURE DROP **-o**− 12" x 12" STATIC PRESSURE DROP (INCHES W.G.) 24" X 24" 48" X 12" 12" X 48" 36" X 36" 0.3 0.05

Face Velocity (FT/MIN)

Based on STANDARD AIR- 075 lb. per cubic foot.

NAH-720-2 sizes: 12x12, 24x24, 48x12, 12x48, 36x36 (305x305, 610x610, 1219x305, 305x1219,914x914)

25

[□] 20

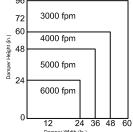
PRESSURE (iii

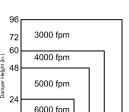
5

NAH-720-2

PRESSURE LIMITATIONS

The chart at the right shows conservative pressure limitations based on a maximum blade deflection


TEMPERATURE LIMITATIONS


Blade Seals: EPDM -40° to +250°F

Silicone Rubber -40° to +450°F Jamb Seals: Flexible stainless steel -40° to +400°F

VELOCITY LIMITATIONS

The chart at the right shows conservative velocity limitations based on damper size.

Damper Width (In.)

24 36 48 60

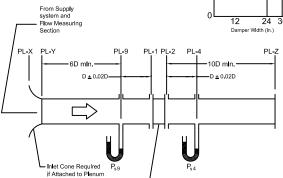


Figure 5.3- Test Device Setup with Inlet and Outlet Ducts

Device Being Tested

AMCA Test Figure 5.3

Figure 5.3 Illustrates a fully ducted damper. This configuration has low pressure drop because entrance and exit losses are minimized by straight duct runs upstream and downstream of the damper.

Pressure Drop Data

This pressure drop data was conducted in accordance with AMCA Standard 500 using Test Figure 5.3. All data has been corrected to represent standard air at a density of .075 lb/cu.ft.

Actual pressure drop found in any HVAC system is a combination of many factors. This pressure drop information along with an analysis of other system influences should be used to estimate actual pressure losses for a damper installed in a given HVAC system.

12 x 12

Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)
1000 (5.08)	0.15 (38)
1500 (7.62)	0.33 (83)
2000 (10.16)	0.55 (139)

24 x 24

Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)
1000 (5.08)	0.03 (7)
1500 (7.62)	0.06 (15)
2000 (10.16)	0.11 (27)

48 x 12

Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)
1000 (5.08)	0.06 (15)
1500 (7.62)	0.15 (38)
2000 (10.16)	0.23 (58)

12 x 48

Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)
1000 (5.08)	0.03 (7)
1500 (7.62)	0.06 (15
2000 (10.16)	0.11 (27)

36 x 36

Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)
1000 (5.08)	0.009 (2)
1500 (7.62)	0.02 (5)
2000 (10.16)	0.03 (7)

PL-B

PL-A

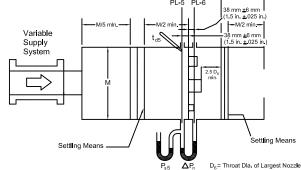


Figure 6.5- Airflow Rate Measurement Setup- Multiple Nozzle Chamber on Fan Outlet

Industrial Airfoil Blade Control Damper Model NAH-720-3

Design / Application

Model NAH-720-3 (Opposed Blade Operation) and NAH-721-3 (Parallel Blade Operation) are Industrial Air Control Damper with Airfoil Shaped Blades. These models consist of a heavy duty flanged frames designed for direct attachment to the ductwork or equipment. NAH Series models are ideal for balancing and/or shut off HVAC applications in the industrial systems with many options to meet your needs.

STANDARD CONSTRUCTION:

FRAME:

8" x 2" x 1/4" H.R.S. steel channel

BLADES:

Airfoil-shaped 14 ga H.R.S. double skin construction 5" to 8" wide.

AXLES:

Plated steel 3/4"Ø

LINKAGE:

9 ga galvanized jamb linkage

BEARINGS:

Bronze Oilite

FINISH:

Powder Coated (super durable polyester gray)

SIZE LIMITATIONS:

Maximum size: 60"w x 96"h

Minimum size: single blade 6"w x 8"h


RATINGS:

Pressure: 10-35" w.g.- differential pressure

Velocity: 3000-6000 fpm Temperature: 180° -400°

Note: Special blade clearances are required when temperatures exceed

250°F (121°C).

NOTE: Damper blades always run horizontal and are always the first dimension (W) when ordering (example: always order W" x H").

*Inside Dimensions are Actual Size(not undersized)

-	
5	
16	
5	
1	

OPTIONS
☐ Stainless steel jamb seals
☐ Flange bolt holes
☐ EPDM blade seals 250° F
☐ Silicone blade seals 450° F
☐ 304 stainless steel construction
☐ 316 stainless steel construction
☐ Ball bearings: (2) hole flange style ☐ Standard ☐ Stainless steel
☐ Stuffing box seal
☐ Outboard bearing with shaft seal
☐ Linkage cover
☐ Central manifold grease system
☐ Hand Quadrant
☐ Actuator
☐ Powder Coated
☐ 1000° F (powder coated) resistance

☐ Insulated (Foam Filled Blades)

	Max.Temp.	"W"	"H"		Flange Width		Bolt Hole Information						
Quantity:	Max.Temp. (if higher than 250°F)	Width	 Helght	"D" 8" std.	"F" 2" std.	ے	N1	L Spacing	M Dia.	Κ	N2	O	REMARKS

Job Nam	ne:									
Location	:									
Architect	t:					□ Me	ode	I NAH-720-3	(opposed blades	s)
Enginee	r:					⊐ Ме	ode	I NAH-721-3	(parallel blades))
Contract	or									

Imperial Units (Forward Flow)

Damper Width X Height	1 in. w.g. Class	4 in. w.g. Class	8 in. wg Class	*Torque (per sq. ft.)
12" x 12"	Class I	Class II	Class II	15 lbs/in
24" X 24"	Class I	Class I	Class I	12.59 lbs/in
36" X 36"	Class I	Class I	Class I	15 lbs/in
12" X 48"	Class III	Class III	Class II	12.59 lbs/in
48" X 12"	Class I	Class I	Class I	12.59 lbs/in
60" X 36"	Class II	Class II	Class II	15 lbs/in

Air leakage is based on operation between 50°F to 104°F. All data corrected to represent air density of 0.075 lbs/ft.

Imperial Units (Back Flow)

Damper	1 in. w.g. Class	4 in. w.g. Class	8 in wo Class	*Torque
Width X Height	Tin Wigi Glass	1 III. W.g. Glaco	o III. Wg Oldoo	(per sq. ft.)
12" x 12"	Class II	Class III	Class III	15 lbs/in
24" X 24"	Class I	Class I	Class II	12.59 lbs/in
36" X 36"	Class II	Class III	Class III	15 lbs/in
12" X 48"	Class III	Class III	Class III	12.59 lbs/in
48" X 12"	Class II	Class II	Class II	12.59 lbs/in
60" X 36"	Class III	Class III	Class II	15 lbs/in

^{*}Torque applied to hold damper in closed position

	Leakage, ft ³/min²/ft					
	Required I	Rating	Extended Rar	nges (optional)		
Pressure	1"	4"	8"	12"		
I	4	8	11	14		
II	10	20	28	35		
III	40	80	112	140		

All data corrected to represent standard air at a density of 0.075 lbs/ft.

NAH-720 SOUND RATINGS								
Damper Size	Dam Fu ll C	per pen	Dam 75% (Dam 50%		Dam 25%	
	CFM	NC	CFM	NC	CFM	NC	CFM	NC
12 x 12	2000 3000 4000	16 28 36	1500 2250 3000	11 21 29	1000 1500 2000	11 18 24	500 750 1000	* *
18 x 18	2250 4500 6750	17 33 43	1688 3375 5063	10 26 37	1125 2250 3375	21 31 40	563 1125 1688	* * 15
24 x 24	4000 8000 12000	11 33 43	3000 6000 9000	10 29 42	2000 4000 6000	26 37 46	1000 2000 3000	* 21 31
NC = Noise criteria in Decibels is based on room effect and 10db of room attenuation. * = Less than 10 NC								

AMCA Test Figures

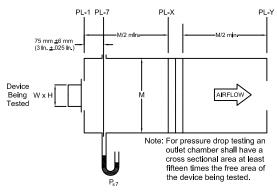


Figure 5.4- Test Device Setup with Outlet Chamber

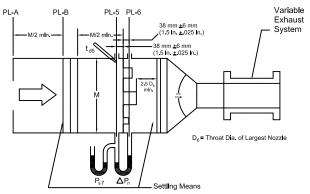


Figure 6.3- Airflow Rate Measurement Setup- Multiple Nozzle Chamber on Fan Inlet

^{*}Torque applied to hold damper in closed position

Standard International Units (Forward Flow)

Damper Width X Height (mm)	250 Pa Class	1 KPa Class	2 KPa Class	*Torque
305 x 305	Class I	Class II	Class II	2,679 grams/cm
610 X 610	Class I	Class I	Class I	2,248 grams/cm
915 X 915	Class I	Class I	Class I	2,679 grams/cm
305 X 1220	Class III	Class III	Class II	2,248 grams/cm
1220 X 305	Class I	Class I	Class I	2,248 grams/cm
1525 X 915	Class II	Class II	Class II	2,679 grams/cm

Air leakage is based on operation between 10°C to 40°C. All data corrected to represent air density of 1.201 kg/m³.

Standard International Units (Back Flow)

Damper Width X Height (mm)	250 Pa Class	1 KPa Class	2 KPa Class	*Torque
305 x 305	Class II	Class III	Class III	2,679 grams/cm
610 X 610	Class I	Class I	Class II	2,248 grams/cm
915 X 915	Class II	Class III	Class III	2,679 grams/cm
305 X 1220	Class III	Class III	Class III	2,248 grams/cm
1220 X 305	Class II	Class II	Class II	2,248 grams/cm
1525 X 915	Class III	Class III	Class II	2,679 grams/cm

^{*}Torque applied to hold damper in closed position

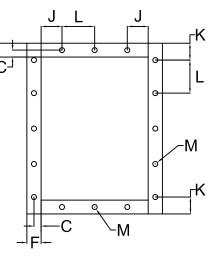
	Leakage, L/s /m ²				
	Required Rating		Extended Ran	iges (optional)	
Pressure	0.25 kPa	1.0 kPa	2.0 kPa	3.0 kPa	
1	20.3	40.6	55.9	71.1	
II	50.8	102	142	178	
III	203	406	569	711	

FRAME CONSTRUCTION OPTIONS

Flange (F Dim): Standard- 2"

Bolt holes: (Standard construction is **no** bolt holes)

Optional - 1-1/2" to 4"


Dim. "M": 7/16" dia. hole

Web (D Dim): Standard - 8"

Dim. "L": 6" Center to Center

Optional - 8" to 12"

Note: Customer must be within Min. or Max limits on table below. Min or Max **Standard** Description Dim. First/Last Space in Head/Sill J min. 3/4" **N1** No. of holes in Head/Sill min. 1.0" First/Last Space in Jamb min. F/2" N2 No. of holes in Jamb min. 1.0" F/(2*M)" C .75*D" to 3/4" Centerline of bolt hole from inside edge of frame Hole Spacing 2" to 12" 6.0" M Mounting hole Diameter 1/4" to 11/16" 7/16"

^{*}Torque applied to hold damper in closed position

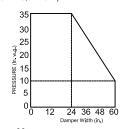
PRESSURE DROP 12" x 12" STATIC PRESSURE DROP (INCHES W.G.) 24" X 24" 48" X 12" 12" X 48" 36" X 36" 0.05 0.04 0.03 0.01

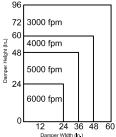
Face Velocity (FT/MIN) Based on STANDARD AIR- .075 lb. per cubic foot.

NAH-720-3 sizes: 12x12, 24x24, 48x12, 12x48, 36x36 (305x305, 610x610, 1219x305, 305x1219,914x914)

NAH-720-3

PRESSURE LIMITATIONS


The chart at the right shows conservative pressure limitations based on a maximum blade deflection


TEMPERATURE LIMITATIONS

Blade Seals: EPDM -40° to +250°F Silicone Rubber -40° to +450°F Jamb Seals: Flexible stainless steel -40° to +400°F

VELOCITY LIMITATIONS

The chart at the right shows conservative velocity limitations based on damper size.

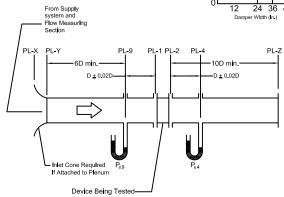


Figure 5.3- Test Device Setup with Inlet and Outlet Ducts

AMCA Test Figure 5.3

Figure 5.3 Illustrates a fully ducted damper. This configuration has low pressure drop because entrance and exit losses are minimized by straight duct runs upstream and downstream of the damper.

Pressure Drop Data

This pressure drop data was conducted in accordance with AMCA Standard 500 using Test Figure 5.3. All data has been corrected to represent standard air at a density of .075 lb/cu.ft.

Actual pressure drop found in any HVAC system is a combination of many factors. This pressure drop information along with an analysis of other system influences should be used to estimate actual pressure losses for a

12 x 12

Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)
1000 (5.08)	0.15 (38)
1500 (7.62)	0.33 (83)
2000 (10.16)	0.55 (139)

24 x 24

Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)
1000 (5.08)	0.03 (7)
1500 (7.62)	0.06 (15)
2000 (10.16)	0.11 (27)

48 x 12

10 // 12	
Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)
1000 (5.08)	0.06 (15)
1500 (7.62)	0.15 (38)
2000 (10.16)	0.23 (58)

12 x 48

Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)
1000 (5.08)	0.03 (7)
1500 (7.62)	0.06 (15
2000 (10.16)	0.11 (27)

36 x 36

00 X 00	
Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)
1000 (5.08)	0.009 (2)
1500 (7.62)	0.02 (5)
2000 (10.16)	0.03 (7)

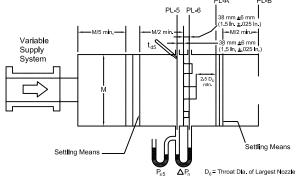


Figure 6.5- Airflow Rate Measurement Setup- Multiple Nozzle Chamber on Fan Outlet

Industrial Airfoil Blade Control Damper Model NAH-720-4

Design / Application

Model NAH-720-4 (Opposed Blade Operation) and NAH-721-4 (Parallel Blade Operation) are Industrial Air Control Damper with Airfoil Shaped Blades. These models consist of a heavy duty flanged frames designed for direct attachment to the ductwork or equipment. NAH Series models are ideal for balancing and/or shut off HVAC applications in the industrial systems with many options to meet your needs.

STANDARD CONSTRUCTION:

FRAME:

8" x 2-1/2" x 3/8" H.R.S. channel

BLADES:

Airfoil-shaped 12 ga H.R.S. double skin construction 5" to 8" wide.

AXLES:

Plated steel 1-7/16"Ø T.G.&P

LINKAGE:

9 ga galvanized jamb linkage

BEARINGS:

Cast iron housing 2 hole ball bearings

FINISH:

Powder Coated (super durable polyester gray)

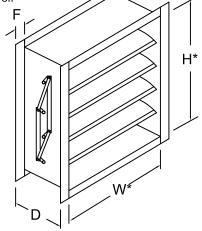
SIZE LIMITATIONS:

Maximum size: 60"w x 96"h

Minimum size: single blade 6"w x 8"h

RATINGS:

Pressure: 10-40" w.g.- differential pressure


Velocity: 3000-8000 fpm

Temperature: -20°F - 1,000°F (without blade gasket)

Note: Special blade clearances are required when temperatures exceed

250°F (121°C).

NOTE: Damper blades always run horizontal and are always the first dimension (W) when ordering (example: always order W" x H").

*Inside Dimensions are Actual Size(not undersized)

OPTIONS

	OFTIONS
	☐ Stainless steel jamb seals
-	☐ Flange bolt holes
	☐ EPDM blade seals 250° F
	☐ Silicone blade seals 450°
	☐ 304 stainless steel constru
	☐ 316 stainless steel constru
	☐ Bearing Options: (consult
7	☐ Hand Quadrant (std. #2) ☐ Wheel driven wo
25	☐ Chain driven wo
	☐ Stuffing box seal
	☐ Outboard bearing with sha
	☐ Linkage cover
	☐ Central manifold grease s
	☐ Actuator
	☐ Powder Coated

☐ Stainless steel jamb seals
☐ Flange bolt holes
☐ EPDM blade seals 250° F
☐ Silicone blade seals 450° F
☐ 304 stainless steel construction
☐ 316 stainless steel construction
☐ Bearing Options: (consult factory)
☐ Hand Quadrant (std. #2) ☐ Wheel driven worm gear heavy duty
☐ Chain driven worm gear heavy duty
☐ Stuffing box seal
Outboard bearing with shaft seal
☐ Linkage cover
☐ Central manifold grease system
☐ Actuator
☐ Powder Coated

☐ 1000° F (powder coated) resistance ☐ Insulated (Foam Filled Blades)

	iwax.remp.	"W"	"H"	Frame Depth	Flange Width			Bolt H	ole Inforr	nation			
Quantity:	(if higher than 250°F)	Width	Height	"D" 8" std.	"F" 2" std.	٦	N1	L Spacing	M Dia.	K	N2	С	REMARKS

Job Name:	
Location:	
Architect:	☐ Model NAH-720-4 (opposed blades)
Engineer:	☐ Model NAH-721-4 (parallel blades)
Contractor:	

Imperial Units (Forward Flow)

Damper Width X Height	1 in. w.g. Class	4 in. w.g. Class	8 in. wg Class	*Torque (per sq. ft.)
12" x 12"	Class I	Class I	Class I	18 lbs-in
24" X 24"	Class I	Class I	Class I	15 lbs -i n
36" X 36"	Class I	Class I	Class I	18 lbs-in
12" X 48"	Class I	Class I	Class I	15 lbs -i n
48" X 12"	Class I	Class I	Class I	15 lbs -i n
60" X 36"	Class I	Class I	Class I	18 lbs-in

Air leakage is based on operation between 50°F to 104°F. All data corrected to represent air density of 0.075 lbs/ft.

Imperial Units (Back Flow)

Damper Width X Height	1 in. w.g. Class	4 in. w.g. Class	8 in. wg Class	*Torque (per sq. ft.)
12" x 12"	Class I	Class I	Class I	18 lbs-in
24" X 24"	Class I	Class I	Class I	15 lbs-in
36" X 36"	Class I	Class I	Class I	18 lbs-in
12" X 48"	Class II	Class II	Class II	15 lbs-in
48" X 12"	Class I	Class I	Class I	15 lbs-in
60" X 36"	Class I	Class II	Class I	18 lbs -i n

^{*}Torque applied to hold damper in closed position

	Leakage, ft ³/min²/ft					
	Required	Rating	Extended Rar	nges (optional)		
Pressure	1"	4"	8"	12"		
I	4	8	11	14		
II	10	20	28	35		
III	40	80	112	140		

All data corrected to represent standard air at a density of 0.075 lbs/ft.

NAH-720 SOUND RATINGS															
Damper Slze	Damper Full Open		Damper 75% Open		Damper 50% Open		Damper 25% Open								
	CFM	NC	CFM	NC	CFM	NC	CFM	NC							
12 x 12	2000 3000 4000	16 28 36	1500 2250 3000	11 21 29	1000 1500 2000	11 18 24	500 750 1000	*							
18 x 18	2250 4500 6750	17 33 43	1688 3375 5063	10 26 37	1125 2250 3375	21 31 40	563 1125 1688	* * 15							
24 x 24	4000 8000 12000	11 33 43	3000 6000 9000	10 29 42	2000 4000 6000	26 37 46	1000 2000 3000	* 21 31							
		edbe l s Is	based on r	oom effec	and 10db	of room a	attenuation	NC = Nolse criteria in Decibels is based on room effect and 10db of room attenuation. *= Less than 10 NC							

AMCA Test Figures

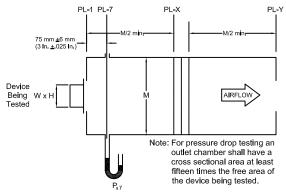


Figure 5.4- Test Device Setup with Outlet Chamber

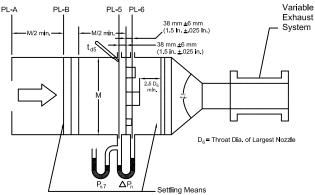


Figure 6.3- Airflow Rate Measurement Setup- Multiple Nozzle Chamber on Fan Inlet

^{*}Torque applied to hold damper in closed position

Standard International Units (Forward Flow)

Damper Width X Height (mm)	250 Pa Class	1 KPa Class	2 KPa Class	*Torque
305 x 305	Class I	Class I	Class I	3,214 grams-cm
610 X 610	Class I	Class I	Class I	2,679 grams-cm
915 X 915	Class I	Class I	Class I	3,214 grams-cm
305 X 1220	Class I	Class I	Class I	2,679 grams-cm
1220 X 305	Class I	Class I	Class I	2,679 grams-cm
1525 X 915	Class I	Class I	Class I	3,214 grams-cm

Air leakage is based on operation between 10°C to 40°C. All data corrected to represent air density of 1.201 kg/m³.

Standard International Units (Back Flow)

Damper Width X Height (mm)	250 Pa Class	1 KPa Class	2 KPa Class	*Torque
305 x 305	Class I	Class I	Class I	3,214 grams-cm
610 X 610	Class I	Class I	Class I	2,679 grams-cm
915 X 915	Class I	Class I	Class I	3,214 grams-cm
305 X 1220	Class II	Class II	Class II	2,679 grams-cm
1220 X 305	Class I	Class I	Class I	2,679 grams-cm
1525 X 915	Class I	Class II	Class I	3,214 grams-cm

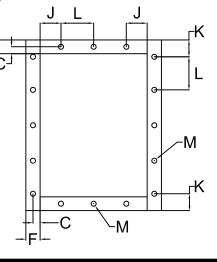
^{*}Torque applied to hold damper in closed position

	Leakage, L/s /m ²						
	Require	d Rating	Extended Ranges (optional)				
Pressure	0.25 kPa	1.0 kPa	2.0 kPa	3.0 kPa			
ı	20.3	40.6	55.9	71.1			
II	50.8	102	142	178			
III	203	406	569	711			

FRAME CONSTRUCTION OPTIONS

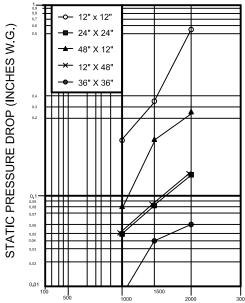
Flange (F Dim): Standard-2" Bolt holes: (Standard construction is **no** bolt holes)

Optional - 1-1/2" to 4"


Dim. **"M"**: 7/16" dia. hole

Web (D Dim): Standard - 8"

Optional - 8" to 12"


Dim, "L": 6" Center to Center

Note: Customer must be within Min. or Max limits on table below. Min or Max **Standard** Description Dim. min. 3/4" First/Last Space in Head/Sill J **N1** No. of holes in Head/Sill min. 1.0" K First/Last Space in Jamb min. F/2" N2 No. of holes in Jamb min. 1.0" C .75*D" to 3/4" F/(2*M)' Centerline of bolt hole from inside edge of frame L 2" to 12" 6.0" Hole Spacing Mounting hole Diameter M 7/16" 1/4" to 11/16"

^{*}Torque applied to hold damper in closed position

PRESSURE DROP

Face Velocity (FT/MIN) Based on STANDARD AIR .. 075 lb. per cubic foot.

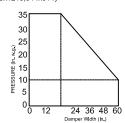
NAH-720-4 sizes: 12x12, 24x24, 48x12, 12x48, 36x36 (305x305, 610x610, 1219x305, 305x1219,914x914)

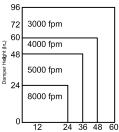
NAH-720-4

PRESSURE LIMITATIONS

The chart at the right shows conservative pressure limitations based on a maximum blade deflection

TEMPERATURE LIMITATIONS


Blade Seals: EPDM -40° to +250°F


Silicone Rubber -40° to +450°F Jamb Seals: Flexible stainless steel -40° to +400°F

VELOCITY LIMITATIONS

From Supply system and

The chart at the right shows conservative velocity limitations based on damper size.

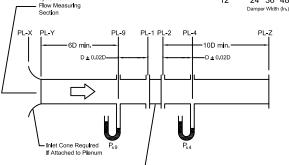


Figure 5.3- Test Device Setup with Inlet and Outlet Ducts

AMCA Test Figure 5.3

Figure 5.3 illustrates a fully ducted damper. This configuration has low pressure drop because entrance and exit losses are minimized by straight duct runs upstream and downstream of the damper.

Pressure Drop Data

This pressure drop data was conducted in accordance with AMCA Standard 500 using Test Figure 5.3. All data has been corrected to represent standard air at a density of .075 lb/cu.ft.

Actual pressure drop found in any HVAC system is a combination of many factors. This pressure drop Information along with an analysis of other system influences should be used to estimate actual pressure losses for a damper installed in a given HVAC system.

Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)
1000 (5.08)	0.18 (45)
1500 (7.62)	0.35 (88)
2000 (10.16)	0.57 (144)

24 x 24

Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)
1000 (5.08)	0.05 (12)
1500 (7.62)	0.08 (20)
2000 (10.16)	0.13 (33)

48 x 12

70 X 12						
Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)					
1000 (5.08)	0.08 (20)					
1500 (7.62)	0.18 (45)					
2000 (10.16)	0.26 (66)					

12 x 48

12 / 40						
Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)					
1000 (5.08)	0.05 (12)					
1500 (7.62)	0.08 (20)					
2000 (10.16)	0.13 (33)					

36 x 36

Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)
1000 (5.08)	0.011 (3)
1500 (7.62)	0.04 (10)
2000 (10.16)	0.06 (15)

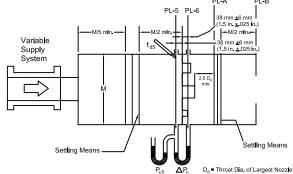


Figure 6.5- Airflow Rate Measurement Setup- Multiple Nozzle Chamber on Fan Outlet

Contractor:

INSTALLATION AND MAINTENANCE INSTRUCTIONS

All Adjustable Louvers and Operating Dampers

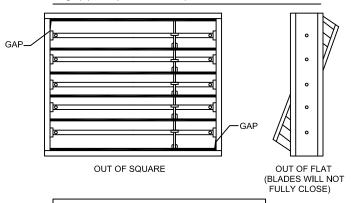
BEFORE INSTALLING IN DUCT:

- 1. If the assembly is provided with un-joined jackshafting that operates more than one section, connect blade jumpers as required or bolt the two jackshafts together, depending on which is provided. Jackshafting may have been repositioned to prevent damage during shipment. If damper operator is to be mounted out of airstream, the jackshaft should extend through the bearing bracket and approximately 6" beyond frame. Secure jackshafting in place with provided clamps.
- 2. If applicable, link lower and upper jackshafts with the crossover bar through the ball joint on crank arm at each jackshaft. Locate crank arm close to bearing support bracket of jackshaft.
- 3. Improperly installed dampers and damper sections prevent blades form sealing properly (Fig. 1). Gaps between the blades and frame indicate a damper installed out of flat. Misalignment of the damper or damper sections can cause twist in the frame resulting in blade-to-linkage bind. This overloads the damper actuator or renders it inoperative.
- 4. We recommend lubricating moving parts with dry graphite.
- 5. Manual dampers should be run through a full-open to full-close cycle by hand to insure proper operation of the damper.
- 6. Motorized dampers should be checked by a preliminary attempt to operate with the motor. If binding occurs, disconnect one end of the driving linkage (and note its exact position beforehand) to operate damper manually and check per above. Reconnect linkage and check again.
- 7. Lift panels into duct (or opening) by its frame, not by any blade or hardware. Final position must be square, straight, plumb, and without twist.
- 8. Due to shipping and handling, dampers may arrive at the site slightly racked to twisted. Dampers are to be squared and not twisted prior to installation into square duct or sleeves.
- 9. Damper should be shimmed in the opening to prevent distortion of the frame by the fasteners holding it in place. Dampers with seals should be caulked to prevent leakage between the frame and duct.
- 10. CHECK DAMPER FOR FREE OPERATION BEFORE INSTALLATION.

MULTIPLE-PANEL DAMPERS:

Multiple-panel dampers will be tagged for ease of assembly.

OPERATORS:


- 1. An extended shaft kit is supplied if no operator is specified.
- 2. Reference specific installation instructions supplied with damper operator for motorized dampers.

MAINTENANCE:

In general this unit must be kept clean and free from foreign matter that may impede normal movement and seating of blades and seals (if applicable). A cleaning schedule should be established and is entirely dependent upon the environment into which the damper is placed. The damper is basically maintenace free with the above exception and regular lubrication and seal inspection as indicated below:

BEARINGS AND LINKAGE PIVOTS: Lubricate with dry graphite as required to provide free movement.

Fig. (1) Dampers Out of Square and Flat

IMPORTANT: Check Often. Use a square.

CAUTION:

Check damper linkage to ensure that blades move freely. Make sure that linkage rods are not bent or damaged. Also check blade brackets for damage. DO NOT INSTALL IF DAMAGED!

NEVER DISCONNECT LINKAGE! If for some reason it is necessary, precision mark the linkage arm where it connects to the actuator and re-connect. If linkage has been disconnected without being marked, power motor to full stroke and push linkage rod to extend louver blades to the full open position and connect and tighten to actuator.

Job Name:	
Location:	
Architect:	
Engineer:	
Contractor:	

ROUND INDUSTRIAL CONTROL DAMPER Model HD-292 Level IV Rating

Design / Application

Model **HD-292** is a Round Industrial Air Control Damper with a single skin 14 ga to 3/16" thick steel blade. This model consist of a heavy duty flanged frame (14 ga to 10 ga steel) designed for direct attachment to the ductwork or equipment. **HD-292** model is ideal for balancing and/or shut off HVAC applications in the industrial systems with many options to meet your needs.

STANDARD CONSTRUCTON

(see table below for specifics)

Frame: Carbon steel (above 12" diameter)

Galvanized steel (up to 12" diameter)

Blades: Steel, welded to shaft, reinforced as required

Axles: Plated steel

Bearings: Bronze sleeve 200° F max

Finish: 14 ga...Galv. steel 12 ga...Baked Powder Polyester Blade Stop: Single Point (not req'd with 1000°F blade gasket)

Seals. None

OPTIONS

SIZE LIMITATIONS:

Minimum Size: 4" Diameter Maximum Size: 60" Diameter

RATINGS: (see page 2 for additional infomation)

Velocity: up to 4000 fpm

Pressure: up to 5 in w.g.- differential pressure Temperature: Bronze Brg. -20°F ~ 200°F (Standard)

Stainless Brg. 200°F ~ 1,000°F (Optional)

☐ Rolled bar stop (1/2" x 1/4" bar thru 17", 1/2" x 1/2" bar over 17")

*Inside Dimensions are Actual Size(not undersized)

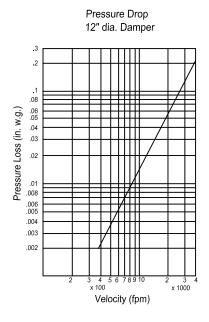
With Crosslink Blade Seal and bar stop

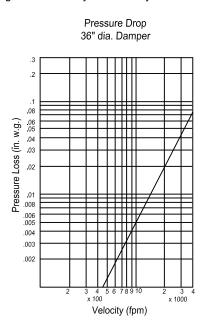
_	_ ' '
Į	☐ Crosslinked closed cell blade seal with rolled bar (Max 190°F)
Į	☐ Silica/Woven hi-temp, low leak, 1000° F seal
	Bolt Holes □ one side □ both sides
Į	☐ Bearings (see page 3)
	TypeUpgrade
	☐ Hand Quadrant #

Hand Quadrant #
Actuator Mounting Plate

☐ Stainless Steel Construction
☐ 304 ☐ 316 ☐ Other_____

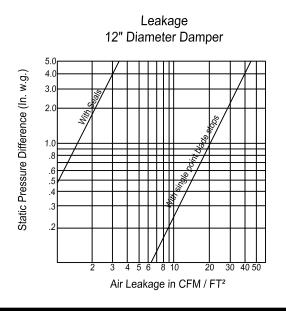
■ Powder Coated Epoxy

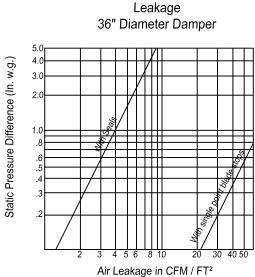

Diameter/I.D. (A")				Flange	Axle	Blade	
Above	Through	Depth "D"	Gauge	Web "F"	Diameter	Thickness	
3.99"	12"	6"	14	1.25"	0.5"	14 ga	
12"	20"	8"	12	1.5"	0.5"	12 ga	
20"	24"	8"	12	1.5"	0.75"	12 ga	
24"	32"	8"	10	2.0"	0.75"	12 ga	
32"	40"	8"	10	2.0"	0.75"	10 ga	
40"	48"	8"	10	2.0"	1.0"	10 ga	
48"	54"	8"	10	2.0"	1.0"	10 ga	
54"	60"	8"	10	2.0"	1.0"	3/16" (thk)	


Job Name:
Location:
Architect:
Engineer:
Contractor:

■ MODEL HD-292

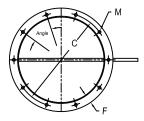
Pressure Drop Data

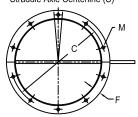

The HVAC system has many factors that effect its internal pressure losses. Dampers in the system is one contributing factor. These dampers have been tested per AMCA Standard 500-D, Fig. 5.3 (ductwork upstream and downstream). There are many influences the ductwork configuration that could effect the performance below such as other objects close to the dampers, elbows or turns near the dampers, internally mounted actuators, etc. This data will assist the designer in the analysis of the system.



Leakage Data

The damper leakage shown below is per AMCA Standard 500-D. The leakage shown is without seals (standard contruction) and with seals, crosslink closed cell or silica/woven. The damper is in the fully closed position.

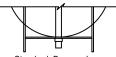



Bolt Holes: Standard construction is $\underline{\mathbf{no}}$ bolt holes. Optional: Bolt holes in one flange or both flanges

If bolt holes are required, CVS recommends either pattern shown on the drawings below. The patterns shown below "Parallel to Axle" or "Straddle Axle" drawings should be specified when ordering. The table below also gives further details and recommendations on our standard hole patterns. Should a custom hole pattern be required, then it must be approved and sent in at time of order.

Bolt Holes Parallel to Axle Centerline (P)

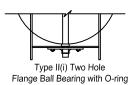
Bolt Holes Straddle Axle Centerline (S)


CVS Recommended Bolt Hole Pattern (Bolt Holes Parallel to Axle Centerline)

Diame	Diameter (I.D.) Number M		Mounting Hole Diameter	Bolt Circle Diameter	Degrees Between
Above	Through	Holes	"M"	"C"	Holes
4"	5"	4	3/8"	*	90
5"	8"	6	3/8"	*	60
8"	11"	6	7/16"	*	60
11"	18"	8	7/16"	*	45
18"	24"	12	7/16"	*	30
24"	36"	16	7/16"	*	22.5
36"	58"	24	7/16"	*	15
58"	60"	32	9/16"	*	11.25

^{*} Bolt Circle Diameter = Damper Diameter + Flange Height + 1/4"

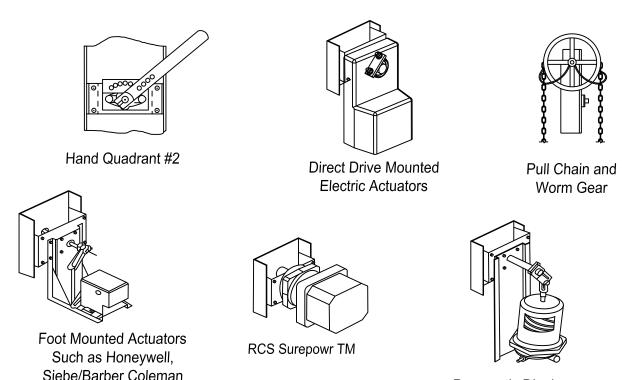
	Max. Temp.		Bolt Hole Information				
Quantity	Max. Temp. (if higher than 250°F)	A Diameter	# of Holes	M Dia.	C Dia.	Placement (P or S)	


BEARING AND SHAFT OPTIONS

Standard: Bronze sleeve or Type I Stainless Stell sleeve

Type II Two Hole Flange Ball Bearing

Type V Two Hole Flange Ball Bearing with O-ring



Type VI Two Hole Flange Ball Bearing with Packing Gland

Bearing Options:				Bearing Up-grade Options:			
Type I	Stainless Steel Pressed Bushing	Type V	(Outboard) Two Hole Flange pressed steel housing	а	Upgrade Type II, V, & VI to cast iron housing	f	Upgrade Type II, V, & VI to All Stainless Steel
Type II	Two Hole Flange Pressed Steel Housing Ball- Permanently Lubricated (-30F to 200°F) (Outboard) pressed bronze	Type VI	all- Permanently Lubricated 30° to 200°F) with O-ring butboard) Two Hole Flange ressed steel housing all- Permanently Lubricated		Grease fitting in leiu of Permanently Lubricated Upgrade Type II, V, & VI to High Temp. (-30° to 400°F)	g	(-30° to 200°F) Upgrade Type II, V, & VI Add Bearing Cover for Harsh environments
Type IV	bushing with O-ring seal (Outboard) pressed Stainless steel bushing with O-ring seal		(-30° to 200°F) with Packing Gland Over 200°F (500°F packing gland material will be supplied)	d	Upgrade Type II, V, & VI to High Temp.graphite (-30° to 750°F)	h	Upgrade Type II, V, & VI to Thermo-plastic (-30° to 200°F) Harsh environments
	Steel bushing with O-ling Seal			е	Upgrade Type II, V, & VI to High Temp. graphite (-450° to 1000°F)	i	Upgrade Type II to include O-ring

Pneumatic Diaphragm

Model *HD-292* has available many operators shown below that can be factory mounted by CVS. Consult factory for other operators not shown.

SPECIFICATIONS:

Industrial Round Dampers meeting the following specifications shall be furnished and installed where shown on drawings and described in the schedule. The damper frame shall consist of heavy gauge steel (14 -10 ga) rolled with a 1-1/4" minimum depth flange/web. The damper blade shall be of a single thickness, heavy gauge steel (14 ga<12"D, 12"-32"D=12 ga, 33"-54"D=10 ga, 3/16" thick plate > 54"). The axle shall be continuous length of 1/2" dia. up to 20", 3/4" dia. up to 40" and 1" dia over 40". Bearings shall be of the bronze sleeve type to minimize wear. Also submitted with submittal package is the dampers performance data such as pressure drop, leakage, and temperature ratings. The damper shall be suitable for velocities up to 4000 fpm at a pressure differential of 5" wg.

ADDITIONAL INFORMATION THAT MAY BE ADDED TO SPECIFICATIONS:

Damper shall be factory supplied with Blade Seals for low leakage. Blade Seals shall be Crosslinked Closed Cell (190°F maximum temperature) or Silica/woven Hi-temp (Up to 1000°F) {Specifier to choose one}. Damper leakage for a 36" diameter damper to be less than 4 cfm/ft² at 1" w.g. and less than 8 cfm/ft² at 4" w.g. shall be submitted for approval on manufacturer's submittal data. Bearing type upgrades may be specified.

INDUSTRIAL CONTROL DAMPERS Model HD-392 Level V Rating

DESIGN / APPLICATION

Model HD-392 is a Round Industrial Air Control Damper with a single skin 10 ga to 1/4" thick steel blade. This model consist of a heavy duty flanged frame (12 ga to 3/16" plate steel) designed for direct attachment to the ductwork or equipment. HD-392 model is ideal for balancing and/or shut off HVAC applications in the industrial systems with many options to meet your needs.

STANDARD CONSTRUCTON

(see table below for specifics)

Frame: Carbon steel

Blades: Steel, welded to shaft, reinforced as required

Axles: Plated steel

Bearings: Bronze sleeve 200° F max

Finish: Baked Powder Polvester

Blade Stop: Single Point (not reg'd with 1000°F blade gasket)

Seals: None

SIZE LIMITATIONS

Minimum Size: 4" Diameter Maximum Size: 60" Diameter

RATINGS (see page 2) Velocity: 6000 fpm

Pressure: 10 in w.g.- differential pressure

Temperature: Bronze Brg. -20°F ~ 200°F (Standard) Stainless Brg. 200°F ~ 1,000°F (Optional)

BLADE/FRAME SECTIONS

*Inside Dimensions are Actual Size(not undersized)

With Crosslink Blade Seal and bar stop

OPTIONS

	Rolled bar	stop	(1/2" x	: 1/4"	bar th	าru 17	7",	1/2"	Χ	1/2"	bar	over	17"
--	------------	------	---------	--------	--------	--------	-----	------	---	------	-----	------	-----

	Crosslinked	closed	cell	seal	with	rolled	bar	(Max	190°F)
--	-------------	--------	------	------	------	--------	-----	------	-------	---

u	Silica/vvoven	nı-temp,	iow leak,	1000°	F	se
---	---------------	----------	-----------	-------	---	----

■ Bolt Holes

☐ one side ☐ both sides

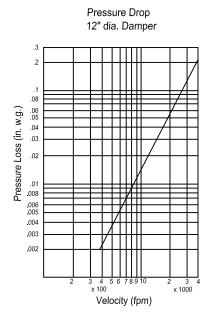
☐ Bearings (see page 3) Type____Upgrade____

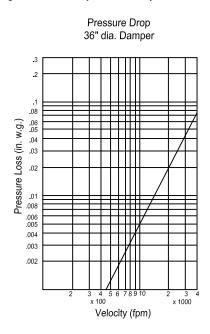
☐ Hand Quadrant #

☐ Actuator Mounting Plate

■ Stainless Steel Construction

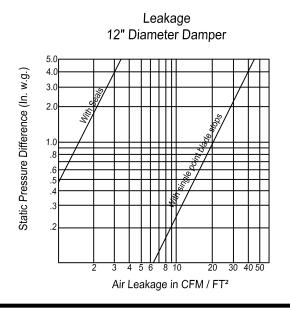
□ 304 □ 316 □ Other

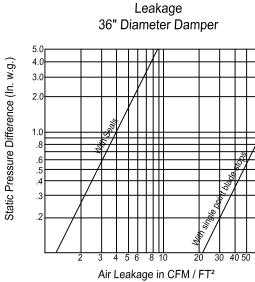

■ Powder Coated Epoxy


Diamet	er/ID(A)	Fra	ame	Flange	Axle	Blade	
Above	Through	Depth D	Gauge	Width F	Diameter	Thickness	
3.99"	12"	6"	12	1.25"	0.5"	10 ga	
12"	20"	8"	10	1.5"	0.5"	10 ga	
20"	24"	8"	10	1.5"	0.75"	3/16" (thk)	
24"	32"	8"	10	2.0"	0.75"	3/16" (thk)	
32"	40"	8"	10	2.0"	0.75"	3/16" (thk)	
40"	48"	8"	10	2.0"	1.0"	3/16" (thk)	
48"	54"	8"	3/16" (thk)	2.0"	1.5"	3/16" (thk)	
54"	60"	8"	3/16" (thk)	2.0"	1.5"	1/4" (thk)	

Job Name:	
Location:	
Architect:	☐ MODEL HD-392
Engineer:	
Contractor:	

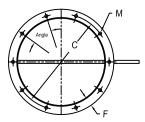
Pressure Drop Data

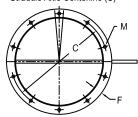

The HVAC system has many factors that effect its internal pressure losses. Dampers in the system is one contributing factor. These dampers have been tested per AMCA Standard 500-D, Fig. 5.3 (ductwork upstream and downstream). There are many influences the ductwork configuration that could effect the performance below such as other objects close to the dampers, elbows or turns near the dampers, internally mounted actuators, etc. This data will assist the designer in the analysis of the system.



Leakage Data

The damper leakage shown below is per AMCA Standard 500-D. The leakge shown is without seals (standard contruction) and with seals, crosslink closed cell or silica/woven. The damper is in the fully closed position.

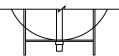



Bolt Holes: Standard construction is **no** bolt holes. Optional: Bolt holes in one flange or both flanges

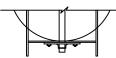
If bolt holes are required, CVS recommends either pattern shown on the drawings below. The patterns shown below "Parallel to Axle" or "Straddle Axle" drawings should be specified when ordering. The table below also gives further details and recommendations on our standard hole patterns. Should a custom hole pattern be required, then it must be approved and sent in at time of order.

Bolt Holes Parallel to Axle Centerline (P)

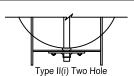
Bolt Holes Straddle Axle Centerline (S)


CVS Recommended Bolt Hole Pattern (Bolt Holes Parallel to Axle Centerline)

Diame	ter/ID (A)	Number of	Mounting Hole Diameter	Bolt Circle Diameter	Degrees Between
Above	Through	Holes	"M"	"C"	Holes
4"	5"	4	3/8"	*	90
5"	8"	6	3/8"	*	60
8"	11"	6	7/16"	*	60
11"	18"	8	7/16"	*	45
18"	24"	12	7/16"	*	30
24"	36"	16	7/16"	*	22.5
36"	58"	24	7/16"	*	15
58"	60"	32	9/16"	*	11.25


^{*} Bolt Circle Diameter = Damper Diameter + Flange Height + 1/4"

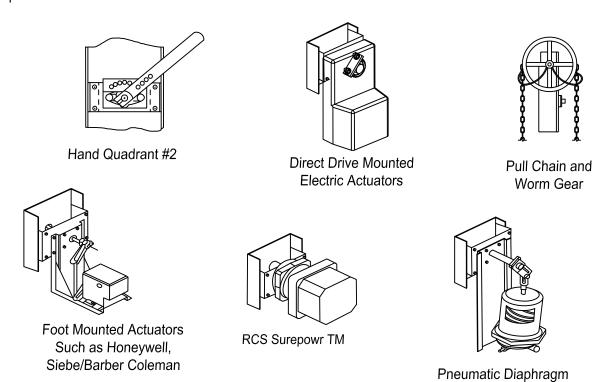
	Max. Temp.		Bolt Hole Information					
Quantity	Max. Temp. (if higher than 250°F)	A Diameter	# of Holes	M Dia.	C Dia.	Placement (P or S)		


BEARING AND SHAFT OPTIONS

Standard: Bronze sleeve or Type I Stainless Stell sleeve

Type II Two Hole Flange Ball Bearing

Flange Ball Bearing with O-ring



Type V Two Hole
Flange Ball Bearing with O-ring

Type VI Two Hole Flange Ball Bearing with Packing Gland

Beari	ing Options:		Bearing Up-grade Options:				
Type I	Stainless Steel Pressed Bushing	Type V	(Outboard) Two Hole Flange pressed steel housing	а	Upgrade Type II, V, & VI to cast iron housing	f	Upgrade Type II, V, & VI to All Stainless Steel
Type II	Two Hole Flange Pressed Steel Housing Ball- Permanently Lubricated (-30F to 200°F)	Type VI	Ball- Permanently Lubricated (-30° to 200°F) with O-ring (Outboard) Two Hole Flange pressed steel housing Ball- Permanently Lubricated	b	Grease fitting in leiu of Permanently Lubricated Upgrade Type II, V, & VI to High Temp. (-30° to 400°F)	g	(-30° to 200°F) Upgrade Type II, V, & VI Add Bearing Cover for Harsh environments
Type III Type IV	(Outboard) pressed bronze bushing with O-ring seal (Outboard) pressed Stainless steel bushing with O-ring seal		(-30° to 200°F) with Packing Gland Over 200° F (500° F packing gland material will be supplied)	d	Upgrade Type II, V, & VI to High Temp. graphite (-30° to 750°F)	h	Upgrade Type II, V, & VI to Thermo-plastic (-30° to 200°F) Harsh environments
	steer bushing with O-ring sear			е	Upgrade Type II, V, & VI to High Temp. graphite (-450° to 1000°F)	i	Upgrade Type II to include O-ring

Model *HD-392* has available many operators shown below that can be factory mounted by CVS. Consult factory for other operators not shown.

SPECIFICATIONS:

Industrial Round Dampers meeting the following specifications shall be furnished and installed where shown on drawings and described in the schedule. The damper frame shall consist of heavy gauge steel (12 ga - 3/16" plate) rolled with a 1-1/4" minimum depth flange/web. The damper blade shall be of a single thickness, heavy gauge steel (10 ga<20"D, 21"-54"D=3/16" plate, 1/4" thick plate > 54"). The axle shall be continuous length of 1/2" dia. up to 20", 3/4" dia. up to 40", 1" dia. up to 48", and 1.5" dia over 48". Bearings shall be of the bronze sleeve type to minimize wear. Also submitted with submittal package is the dampers performance data such as pressure drop, leakage, and temperature ratings. The damper shall be suitable for velocities up to 6000 fpm at a pressure differential of 10" wg.

ADDITIONAL INFORMATION THAT MAY BE ADDED TO SPECIFICATIONS:

Damper shall be factory supplied with Blade Seals for low leakage. Blade Seals shall be Crosslinked Closed Cell (190°F maximum temperature) or Silica/woven Hi-temp (Up to 1000°F) {Specifier to choose one}. Damper leakage for a 36" diameter damper to be less than 4 cfm/ft² at 1" w.g. and less than 8 cfm/ft² at 4" w.g. shall be submitted for approval on manufacturer's submittal data. Bearing type upgrades may be specified.

INDUSTRIAL CONTROL DAMPERS Model HD-492 Level VI Rating

APPLICATION AND DESIGN

Model **HD-492** is a Round Industrial Air Control Damper with a single skin 3/16" to 3/8" thick steel blade. This model consist of a heavy duty flanged frame (10 ga to 3/16" plate steel) designed for direct attachment to the ductwork or equipment. **HD-492** model is ideal for balancing and/or shut off HVAC applications in the industrial systems with many options to meet your needs.

STANDARD CONSTRUCTON

(see table below for specifics)

Frame: Carbon steel

Blades: Steel, reinforced as required

Axles: Plated steel

Bearings: Bronze sleeve 200°F max Finish: Baked Powder Polyester

Blade Stop: Single Point (not req'd with 1000°F blade gasket)

Seals: None

SIZE LIMITATIONS

Minimum Size: 4" Diameter Maximum Size: 72" Diameter

RATINGS (see page 2)

Velocity: 6400 fpm

Pressure: 20 in w.g.- differential pressure
Temperature: Bronze Brg. -20°F ~ 200°F (Standard)

Stainless Brg. 200°F ~ 1,000°F (Optional)

OPTIONS

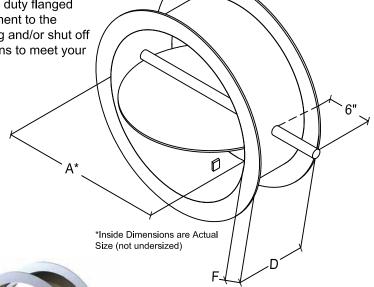
- ☐ Rolled bar stop (1/2" x 1/4" bar thru 17", 1/2" x 1/2" bar over 17")
- ☐ Crosslinked closed cell seal with rolled bar (190°F)
- ☐ Silica/Woven hi-temp, low leak, 1000° F seal

☐ Bolt Holes

□ one side □ both sides

☐ Bearings (see page 3)

Type____Upgrade____


☐ Hand Quadrant #

■ Actuator Mounting Plate

☐ Stainless Steel Construction

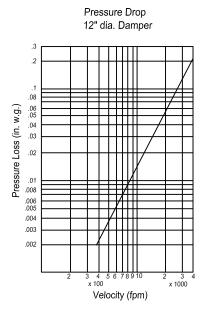
□ 304 □ 316 □ Other___

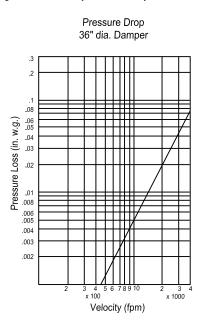
□ Powder Coated Epoxy

BLADE/FRAME SECTIONS

Without Blade Seal and single point stop

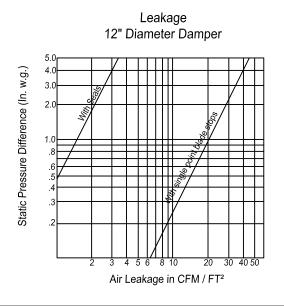
With Crosslink Blade Seal and bar stop

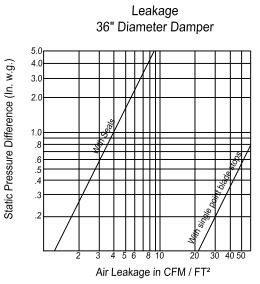

Diame	Diameter/ID (A)		ame	Flange	Axle	*Blade	
Above	Through	Depth D	Gauge	Width F	Diameter	Thickness	
3.99"	12"	6"	10	1.25"	0.5"	3/16" (thk)	
12"	20"	8"	10	1.5"	0.5"	3/16" (thk)	
20"	24"	8"	10	1.5"	0.75"	3/16" (thk)	
24"	32"	8"	10	2.0"	0.75"	1/4" (thk)	
32"	40"	8"	3/16" (thk)	2.0"	0.75"	1/4" (thk)	
40"	48"	8"	3/16" (thk)	2.0"	1.0"	1/4" (thk)	
48"	54"	8"	3/16" (thk)	2.0"	1.5"	3/8" (thk)	
54"	60"	8"	3/16" (thk)	2.0"	1.5"	3/8" (thk)	
60"	72"	8"	3/16" (thk)	2.0"	2"	3/8" (thk)	


*blades reinforced as required.

Job Name:	
Location:	
Architect:	☐ MODEL HD-492
Engineer:	
Contractor:	

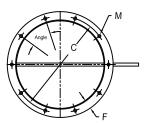
Pressure Drop Data

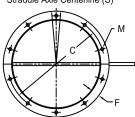

The HVAC system has many factors that effect its internal pressure losses. Dampers in the system is one contributing factor. These dampers have been tested per AMCA Standard 500-D, Fig. 5.3 (ductwork upstream and downstream). There are many influences the ductwork configuration that could effect the performance below such as other objects close to the dampers, elbows or turns near the dampers, internally mounted actuators, etc. This data will assist the designer in the analysis of the system.



Leakage Data

The damper leakage shown below is per AMCA Standard 500-D. The leakage shown is without seals (standard contruction) and with seals, crosslink closed cell or silica/woven. The damper is in the fully closed position.




Bolt Holes: Standard construction is **no** bolt holes. Optional: Bolt holes in one flange or both flanges

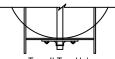
If bolt holes are required, CVS recommends either pattern shown on the drawings below. The patterns shown below "Parallel to Axle" or "Straddle Axle" drawings should be specified when ordering. The table below also gives further details and recommendations on our standard hole patterns. Should a custom hole pattern be required, then it must be approved and sent in at time of order.

Bolt Holes Parallel to Axle Centerline (P)

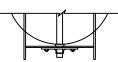
Bolt Holes Straddle Axle Centerline (S)

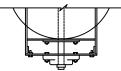
BEARING AND SHAFT OPTIONS

CVS Recommended Bolt Hole Pattern (Bolt Holes Parallel to Axle Centerline)


Diame	ter/ID (A)	Number of	Mounting Hole Diameter	Bolt Circle Diameter	Degrees Between
Above	Through	Holes	"M"	"C"	Holes
4"	5"	4	3/8"	*	90
5"	8"	6	3/8"	*	60
8"	11"	6	7/16"	*	60
11"	18"	8	7/16"	*	45
18"	24"	12	7/16"	*	30
24"	36"	16	7/16"	*	22.5
36"	58"	24	7/16"	*	15
58"	60"	32	9/16"	*	11.25
60"	72"	36	9/16"	*	10

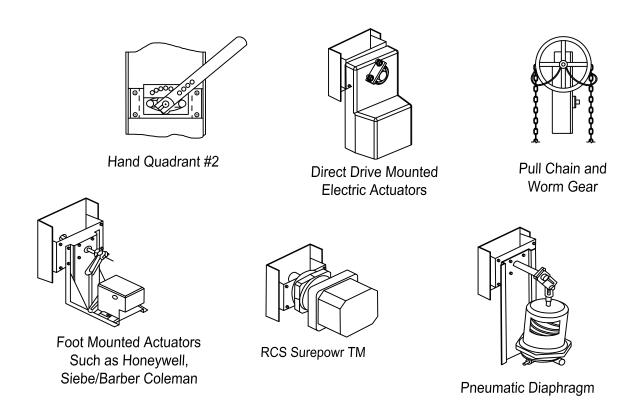
* Bolt Circle Diameter = Damper Diameter + Flange Height + 1/4"


	Max. Temp.		Во	It Hole In	formatio	n
Quantity	Max. Temp. (if higher than 250°F)	A Diameter	# of Holes	M Dia.	C Dia	Placement (P or S)


Standard: Bronze sleeve or Type I Stainless Stell sleeve

Type II Two Hole Flange Ball Bearing

Type II(i) Two Hole Flange Ball Bearing with O-ring


Type V Two Hole Flange Ball Bearing with O-ring

Type VI Two Hole Flange Ball Bearing with Packing Gland

Bearing Options:				Bearing Up-grade Options:			
Type I	Stainless Steel Pressed Bushing	Type V	(Outboard) Two Hole Flange pressed steel housing	а	Upgrade Type II, V, & VI to cast iron housing	f	Upgrade Type II, V, & VI to All Stainless Steel
Type II	Two Hole Flange Pressed Steel Housing Ball- Permanently Lubricated (-30F to 200°F)	Type VI	Ball- Permanently Lubricated (-30° to 200°F) with O-ring (Outboard) Two Hole Flange pressed steel housing Ball- Permanently Lubricated	b	Grease fitting in leiu of Permanently Lubricated Upgrade Type II, V, & VI to High Temp. (-30° to 400°F)	g	(-30° to 200°F) Upgrade Type II, V, & VI Add Bearing Cover for Harsh environments
Type III Type IV	(Outboard) pressed bronze bushing with O-ring seal (Outboard) pressed Stainless steel bushing with O-ring seal		(-30° to 200°F) with Packing Gland Over 200° F (500° F packing gland material will be supplied)	d	Upgrade Type II, V, & VI to High Temp. graphite (-30° to 750°F)	h	Upgrade Type II, V, & VI to Thermo-plastic (-30° to 200°F) Harsh environments
	stor, storming with or mig stori			е	Upgrade Type II, V, & VI to High Temp. graphite (-450° to 1000°F)	i	Upgrade Type II to include O-ring

Model *HD-492* has available many operators shown below Consult factory for other operators not shown.

SPECIFICATIONS:

Industrial Round Dampers meeting the following specifications shall be furnished and installed where shown on drawings and described in the schedule. The damper frame shall consist of heavy gauge steel (10 ga - 3/16" plate) rolled with a 1-1/4" minimum depth flange/web. The damper blade shall be of a single thickness, heavy gauge steel (3/16" plate<24"D, 24"-48"D=1/4" plate, 3/8" thick plate > 54"). The axle shall be a continuous length of 1/2" dia. up to 20", 3/4" dia. up to 40", 1" dia. up to 48", 1.5" dia up to 60", and 2" dia over 60". Bearings shall be of the bronze sleeve type to minimize wear. Also submitted with submittal package is the dampers performance data such as pressure drop, leakage, and temperature ratings. The damper shall be suitable for velocities up to 6400 fpm at a pressure differential of 20" wg. Damper shall be Model HD-492 or equilivant.

ADDITIONAL INFORMATION THAT MAY BE ADDED TO SPECIFICATIONS:

Damper shall be factory supplied with Blade Seals for low leakage. Blade Seals shall be Crosslinked Closed Cell (190°F maximum temperature) or Silica/woven Hi-temp (Up to 1000°F) {Specifier to choose one}. Damper leakage for a 36" diameter damper to be less than 4 cfm/ft² at 1" w.g. and less than 8 cfm/ft² at 4" w.g. shall be submitted for approval on manufacturer's submittal data. Bearing type upgrades may be specified.

INDUSTRIAL ISOLATION DAMPERS Model HD-492-ISO

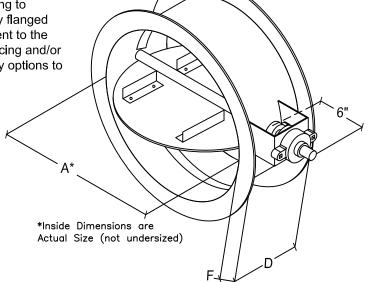
DESIGN / APPLICATION

Model HD-492-ISO is a Round Industrial Air Control Damper with a single skin 3/16" - 1/4" thick steel blade with a steel retainer ring to secure a 450°F blade seal. This model consist of a heavy duty flanged frame (10 ga to 3/16" plate steel) designed for direct attachment to the ductwork or equipment. HD-492-ISO model is ideal for balancing and/or shut off HVAC applications in the industrial systems with many options to meet your needs.

STANDARD CONSTRUCTON

(see table below for specifics)

Frame: Steel channel


Blades: Steel, w/ retainer rings for seals

Axles: Steel

Bearings: Lubricated ball bearings w/ packing gland, **Type VI

Finish: Baked Powder Polyester Seals: Double Lapped Silicone 450° F

**over 200° F (450° F packing gland material included)

SIZE LIMITATIONS

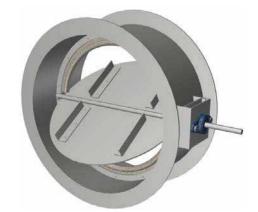
Minimum Size: 4" Diameter Maximum Size: 60" Diameter

RATINGS

Velocity: 6400 fpm

Pressure: 20 in w.g.- differential pressure (up to 30" dia)

15 in w.g.- differential pressure (up to 60" dia)


Temperature: -20°F ~ *450° F

Leakage: Shall not exceed .350 scfm per inch

of blade circumfrence at 10" w.g.

□ -20°F to *200° F

☐ 205°F to *450° F

OPTIONS:

☐ Bolt Holos

Finish Options:

Doit Hoics	
☐ one side	□ both sides
☐ Stainless S	teel Bearings

☐ Bearings (see page 3) Type Upgrade

☐ Hand Quadrant #_____

	Actuator	Mounting	Dioto
ш	Actuator	iviountina	Plate

0' ' '	O	Construction
 Stainiace	STAAL	(Anetruction

Stainless Steel Construction

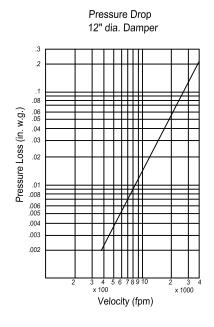
□ 304 S.S.

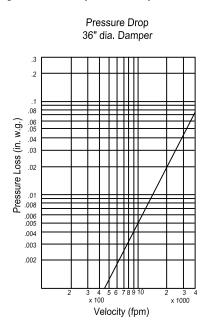
□ 304L S.S.

□ 316 S.S. □ 316L S.S.

■ Powder Coated Epoxy

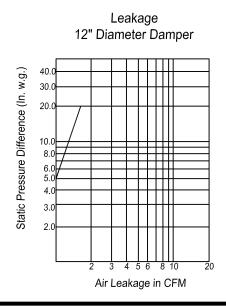
☐ Heresite coated

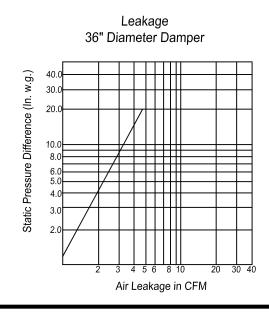

Diameter(A)		Frame		Flange	Axle	*Blade	
Above	Through	Depth D	Gauge	Width F	Diameter	Thickness	
3.99"	20"	6"	10	1.25"	0.75"	3/16" (thk)	
20"	28"	8"	10	1.5"	1.0"	3/16" (thk)	
28"	40"	8"	10	1.5"	1.50"	1/4" (thk)	
40"	48"	8"	3/16" (thk)	2.0"	1.50"	1/4" (thk)	
48"	60"	8"	3/16" (thk)	2.0"	1.75"	1/4" (thk)	


*blades reinforced as required.

Job Name:	
Location:	
Architect:	☐ MODEL HD-492-ISO
Engineer:	
Contractor:	

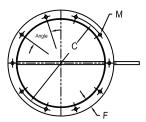
Pressure Drop Data

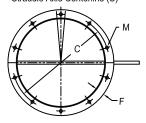

The HVAC system has many factors that effect its internal pressure losses. Dampers in the system is one contributing factor. These dampers have been tested per AMCA Standard 500-D, Fig. 5.3 (ductwork upstream and downstream). There are many influences the ductwork configuration that could effect the performance below such as other objects close to the dampers, elbows or turns near the dampers, internally mounted actuators, etc. This data will assist the designer in the analysis of the system.



Leakage Data

The damper leakage shown below is per AMCA Standard 500-D . The leakge shown is with silicone seals (standard contruction). The damper is in the fully closed position.



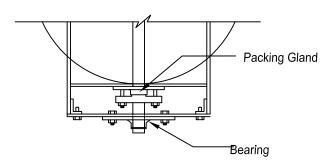

Bolt Holes: Standard construction is **no** bolt holes. Optional: Bolt holes in one flange or both flanges

If bolt holes are required, CVS recommends either pattern shown on the drawings below. The patterns shown below "Parallel to Axle" or "Straddle Axle" drawings should be specified when ordering. The table below also gives further details and recommendations on our standard hole patterns. Should a custom hole pattern be required, then it must be approved and sent in at time of order.

Bolt Holes Parallel to Axle Centerline (P)

Bolt Holes Straddle Axle Centerline (S)

CVS Recommended Bolt Hole Pattern (Bolt Holes Parallel to Axle Centerline)

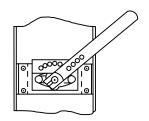

Diameter/ID (A)		Number of	Mounting Hole Diameter	Bolt Circle Diameter	Degrees Between
Above	Through	Holes	"M"	"C"	Holes
4"	5"	4	3/8"	*	90
5"	8"	6	3/8"	*	60
8"	11"	6	7/16"	*	60
11"	18"	8	7/16"	*	45
18"	24"	12	7/16"	*	30
24"	36"	16	7/16"	*	22.5
36"	58"	24	7/16"	*	15
58"	60"	32	9/16"	*	11.25
60"	72"	36	9/16"	*	10

^{*} Bolt Circle Diameter = Damper Diameter + Flange Height + 1/4"

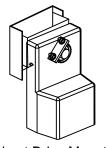
	Max. Temp.		Bolt Hole Information				
Quantity	Max. Temp. (if higher than 250°F)	"A" Diameter	# of Holes	M Dia.	C Dia.	Placement (P or S)	

BEARING OPTIONS

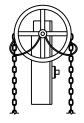
Type VI Two Hole Flange Ball Bearing with Packing Gland

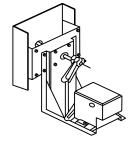

Type VI (Outboard) Two Hole Flange pressed steel housing Ball- Permanently Lubricated (-30° to 200°F) with Packing Gland Over 200° F (450° F packing gland material will be supplied)

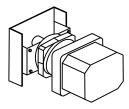
Bearing Options:

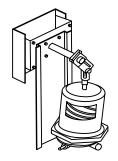

- **Bearing Up-grade Options:**
- a... Upgrade Type VI to cast iron housing
- b... Grease fitting in leiu of Permanently Lubricated
- c... Upgrade Type VI to High Temp. (-30° to 400°F)
- d... Upgrade Type VI to High Temp. graphite (-30° to 750°F)
- e... Upgrade Type VI to High Temp. graphite (-450° to 1000°F)

- f... Upgrade Type VI to All Stainless Steel (-30° to 200°F)
- J... Upgrade Type VI Add Bearing Cover for Harsh environments
- h... Upgrade Type VI to Thermo-plastic (-30° to 200°F) Harsh environments


Model *HD-492-ISO* has available many operators shown below Consult factor for other operators not shown.


Hand Quadrant #2


Direct Drive Mounted Electric Actuators


Pull Chain and Worm Gear

Foot Mounted Actuators Such as Honeywell, Siebe/Barber Coleman

RCS Surepowr TM

Pneumatic Diaphragm

SPECIFICATIONS:

Industrial Round Dampers meeting the following specifications shall be furnished and installed where shown on drawings and described in the schedule. The damper frame shall consist of heavy gauge steel (10 ga - 3/16" plate) rolled with a 1-1/4" minimum depth flange/web. The damper blade shall be of a single thickness heavy gauge steel (3/16" plate<28"D, 1/4" thick plate > 54"). The axle shall be a continuous length of 3/4" dia. up to 20", 1" dia. up to 28", 1.5" dia up to 48", and 2" dia over 48". Bearings shall be lubricated ball bearings with packing gland, type VI to minimize wear. Also submitted with submittal package is the dampers performance data such as pressure drop, leakage, and temperature ratings. The damper shall be suitable for velocities up to 6400 fpm at a pressure differential of 20" wg. up to 36" diameter and 15" w.g. up to 60" diameter.

ADDITIONAL INFORMATION THAT MAY BE ADDED TO SPECIFICATIONS:

3XX grade Stainless Steel construction for corrosion resistance. Powder Coated Epoxy or Heresite Coating to be applied for additional corrison resistance.

Product Range

- ► Fire-Resisting Ductwork (BS & EN)
- ► Fire-rated Insulation (ASTM & UL)
- ➤ Sound Attenuators (ASTM & BS)
- ➤ VAV Boxes (AHRI)
- ▶ Life Safety Dampers (UL)
- ► Control Dampers (AMCA & BS)
- ➤ Access Doors (BS & EN)
- ► Louvers (AMCA)

- ➤ Smoke Exhaust, Building, Car Park & Tunnel Ventilation Fans (AMCA & EN)
- ► Domestic and Industrial Ventilation Fans
- ► AHU, FAHU, FCU, RTU, ERV & Ecology Units (Eurovent, TUV & AHRI)
- Electrostatic Precipitators (ESPs)& UL Listed Air Filters (UL)

Our Brands

Non-Coated Fire-Resisting Ductwork & Life Safety Dampers

Smoke Exhaust, Car Park & Tunnel Ventilation

Control Dampers, Louvers, Sound Attenuators & VAV Boxes

Fire-rated Insulation

Coated Fire-Resisting
Ductwork

General Ventilation

AHU, FCU, RTU, ERV & Ecology Units

U.A.E

Industrial Area 2, Al Wasit Road, Sharjah, UAE K.S.A

Dammam 2nd Industrial City, Dammam 31952, K.S.A **Egypt**

Al Minya Industrial Zone, Al Minya Governorate 2427606, Egypt Qatar

Street 9 Industrial Area, Doha, Qatar

www.cvshvac.com