

Industrial Airfoil Blade Control Damper Model NAH-720-1

Design / Application

Model **NAH-720-1** (Opposed Blade Operation) and **NAH-721-1** (Parallel Blade Operation) are Industrial Air Control Damper with Airfoil Shaped Blades. These models consist of a heavy duty flanged frames designed for direct attachment to the ductwork or equipment. **NAH Series** models are ideal for balancing and/or shut off HVAC applications in the industrial systems with many options to meet your needs.

STANDARD CONSTRUCTION:

FRAME:

8" x 2" x 12ga H.R.S. steel channel

BLADES:

Airfoil-shaped 16 ga H.R.S. double skin construction 5" to 8" wide.

AXLES:

Plated steel 1/2"Ø

LINKAGE:

9 ga galvanized jamb linkage

BEARINGS:

Bronze Oilite

FINISH:

Powder Coated (super durable polyester gray)

SIZE LIMITATIONS:

Maximum size: 60"w x 96"h

Minimum size: single blade 6"w x 8"h

RATINGS:

Pressure: 8-20" w.g.- differential pressure

Velocity: 2000-4500 fpm
Temperature: 180° - 400°

Note: Special blade clearances are required when temperatures exceed

250°F (121°C).

NOTE: Damper blades <u>always</u> run horizontal and are always the first dimension (W) when ordering (example: always order W" x H").

*Inside Dimensions are Actual Size(not undersized)

☐ Stainless steel jam

☐ Flange bolt holes

☐ EPDM blade seals 250° F

☐ Silicone blade seals 450° F

☐ 304 stainless steel construction☐ 316 stainless steel construction☐

☐ Ball bearings: (2) hole flange style

Standard

☐ Standard
☐ Stainless steel

☐ Stainless

☐ Stuffing box seal

☐ Outboard bearing with shaft seal

☐ Linkage cover

☐ Central manifold grease system

☐ Hand Quadrant

☐ Actuator

☐ Powder Coated

☐ 1000° F (powder coated) resistance

☐ Insulated (Foam Filled Blades)

	Max.Temp.	"w"	"H"	Frame Depth	Flange Width	th Bolt Hole Information							
Quantity:	Max.Temp. (if higher than 250°F)	"W" Wldth	Height	"D" 8" std.	"F" 2" std.	J	N1	L Spacing	M Dia.	K	N2	O	REMARKS

Job Nam	ne:					
Location	:					
Architect	t:					□ Mode
Enginee	r:					⊒ Mode
Contract	or:					_

□ Model	NAH-720-1	(opposed blades)
	NAH-721-1	(parallel blades)

Imperial Units (Forward Flow)

Damper Width X Height	1 in. w.g. Class	4 in. w.g. Class	8 in. wg Class	*Torque (per sq. ft.)
12" x 12"	Class I	Class II	Class II	15 lbs/in
24" X 24"	Class I	Class I	Class I	12.59 lbs/in
36" X 36"	Class I	Class I	Class I	15 lbs/in
12" X 48"	Class III	Class III	Class II	12.59 lbs/in
48" X 12"	Class I	Class I	Class I	12.59 lbs/in
60" X 36"	Class II	Class II	Class II	15 lbs/in

Air leakage is based on operation between 50°F to 104°F. All data corrected to represent air density of 0.075 lbs/ft3

Imperial Units (Back Flow)

Damper	1 in wa Class	4 in wa Class	O in wa Class	*Torque
Width X Height	1 in. w.g. Class	4 in. w.g. Class	8 in. wg Class	(per sq. ft.)
12" x 12"	Class II	Class III	Class III	15 lbs/in
24" X 24"	Class I	Class I	Class II	12.59 lbs/in
36" X 36"	Class II	Class III	Class III	15 lbs/in
12" X 48"	Class III	Class III	Class III	12.59 lbs/in
48" X 12"	Class II	Class II	Class II	12.59 lbs/in
60" X 36"	Class III	Class III	Class II	15 lbs/in

^{*}Torque applied to hold damper in closed position

	Leakage, ft ³/min²/ft							
	Required	Rating	Extended Ranges (optional					
Pressure	1"	4"	8"	12"				
I	4	8	11	14				
II	10	20	28	35				
III	40	80	112	140				

All data corrected to represent standard air at a density of 0.075 lbs/ft.

		0730
	24 x 24	4000 8000 12000
	NC = Noise * = Less tha	
PL-A	PL-B	<i>F</i>
		t _{d5}

			3
75 mm ±6 m (3 ln. ±.025	nm .	PL-X	PL-Y
Device Being W x H Tested		M	AIRFLOW
		outle cros fiftee	pressure drop testing an et chamber shall have a s sectional area at least en times the free area of device being tested.

Figure 5.4- Test Device Setup with Outlet Chamber

NAH-720 SOUND RATINGS									
Damper Size	Damper Full Open		Dam 75% (Dam 50% (Damper 25% Open		
	CFM	NC	CFM	NC	CFM	NC	CFM	NC	
12 x 12	2000 3000 4000	16 28 36	1500 2250 3000	11 21 29	1000 1500 2000	11 18 24	500 750 1000	*	
18 x 18	2250 4500 6750	17 33 43	1688 3375 5063	10 26 37	1125 2250 3375	21 31 40	563 1125 1688	* * 15	
24 x 24	4000 8000 12000	11 33 43	3000 6000 9000	10 29 42	2000 4000 6000	26 37 46	1000 2000 3000	* 21 31	

in Decibels is based on room effect and 10db of room attenuation.

Figure 6.3- Airflow Rate Measurement Setup- Multiple Nozzle Chamber on Fan Inlet

^{*}Torque applied to hold damper in closed position

Standard International Units (Forward Flow)

Damper Width X Height (mm)	250 Pa Class	1 KPa Class	2 KPa Class	*Torque
305 x 305	Class I	Class II	Class II	2,679 grams/cm
610 X 610	Class I	Class I	Class I	2,248 grams/cm
915 X 915	Class I	Class I	Class I	2,679 grams/cm
305 X 1220	Class III	Class III	Class II	2,248 grams/cm
1220 X 305	Class I	Class I	Class I	2,248 grams/cm
1525 X 915	Class II	Class II	Class II	2,679 grams/cm

Air leakage is based on operation between 10°C to 40°C. All data corrected to represent air density of 1.201 kg/m³.

Standard International Units (Back Flow)

Damper Width X Height (mm)	250 Pa Class	1 KPa Class	2 KPa Class	*Torque
305 x 305	Class II	Class III	Class III	2,679 grams/cm
610 X 610	Class I	Class I	Class II	2,248 grams/cm
915 X 915	Class II	Class III	Class III	2,679 grams/cm
305 X 1220	Class III	Class III	Class III	2,248 grams/cm
1220 X 305	Class II	Class II	Class II	2,248 grams/cm
1525 X 915	Class III	Class III	Class II	2,679 grams/cm

^{*}Torque applied to hold damper in closed position

	Leakage, L/s /m ²			
	Required Rating		Extended Ranges (optional)	
Pressure	0.25 kPa	1.0 kPa	2.0 kPa	3.0 kPa
I	20.3	40.6	55.9	71.1
II	50.8	102	142	178
III	203	406	569	711

FRAME & BOLT HOLE CONSTRUCTION OPTIONS

Flange (F Dim): Standard-2" Bolt holes: (Standard construction is **no** bolt holes)

Optional - 1-1/2" to 4"

Dim. "M": 7/16" dia. hole Dim. "L": 6" Center to Center

Note: Customer must be within Min. or Max limits on table below.

Web (D Dim): Standard - 8"

Optional - 8" to 12"

n

Description Dim. Min or Max Standard First/Last Space in Head/Sill J min. 3/4" **N1** No. of holes in Head/Sill min. 1.0" First/Last Space in Jamb K min. F/2" N₂ No. of holes in Jamb min. 1.0" C 75*D" to 3/4" F/(2*M)" Centerline of bolt hole from inside edge of frame Hole Spacing 2" to 12" 6.0" Mounting hole Diameter M 1/4" to 11/16" 7/16"

^{*}Torque applied to hold damper in closed position

PRESSURE DROP 12" x 12' STATIC PRESSURE DROP (INCHES W.G.) 24" X 24" 48" X 12" 12" X 48" 36" X 36" 0.01

Face Velocity (FT/MIN)

Based on STANDARD AIR- .075 lb. per cubic foot.

≥ 20

NAH-720-1 sizes: 12x12, 24x24, 48x12, 12x48, 36x36 (305x305, 610x610, 1219x305, 305x1219,914x914)

NAH-720-1

PRESSURE LIMITATIONS

The chart at the right shows conservative pressure limitations based on a maximum blade deflection

TEMPERATURE LIMITATIONS

Blade Seals: EPDM -40° to +250°F

VELOCITY LIMITATIONS

The chart at the right shows conservative velocity limitations based on damper size.

12 24 36 48 60

Figure 5.3- Test Device Setup with Inlet and Outlet Ducts

AMCA Test Figure 5.3

Figure 5.3 Illustrates a fully ducted damper. This configuration has low pressure drop because entrance and exit losses are minimized by straight duct runs upstream and downstream of the damper.

Pressure Drop Data

This pressure drop data was conducted in accordance with AMCA Standard 500 using Test Figure 5.3. All data has been corrected to represent standard air at a density of .075 lb/cu.ft.

Actual pressure drop found in any HVAC system is a combination of many factors. This pressure drop information along with an analysls of other system influences should be used to estimate actual pressure losses for a damper installed in a given HVAC system.

12 x 12

Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)
1000 (5.08)	0.15 (38)
1500 (7.62)	0.33 (83)
2000 (10.16)	0.55 (139)

24 x 24

Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)
1000 (5.08)	0.03 (7)
1500 (7.62)	0.06 (15)
2000 (10.16)	0.11 (27)

48 x 12

Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)	
1000 (5.08)	0.06 (15)	
1500 (7.62)	0.15 (38)	
2000 (10.16)	0.23 (58)	

Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)
1000 (5.08)	0.03 (7)
1500 (7.62)	0.06 (15
2000 (10.16)	0.11 (27)

36 x 36

Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)
1000 (5.08)	0.009 (2)
1500 (7.62)	0.02 (5)
2000 (10.16)	0.03 (7)

Figure 6.5- Airflow Rate Measurement Setup- Multiple Nozzle Chamber on Fan Outlet